Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
+13

what formula would i use to solve the problem for area of this triangle: triangle ABC, a=3, angleB=24, angleC=24

\\(1) \qquad Area=\dfrac{a\cdot b}{2}\cdot\sin{(C)}\\\\  (2) \qquad b=a \cdot \dfrac{\sin{(C)}} {\sin{(A)}} }\\\\  (3) \qquad \sin{(A)}= \sin{( 180\ensurement{^{\circ}}-(B+C) )} = \sin{( B+C ) }

 

Area=\dfrac{a^2}{2} \cdot \dfrac{ \sin{(B)} \cdot\sin{(C)} } {\sin{(B+C)}} = \dfrac{a^2}{2} \cdot   \left( \dfrac{ 1 } { \cot{(B)} + \cot{(C)} } } \right)\\\\\\  Area = \dfrac{3^2}{2} \cdot   \left( \dfrac{ 1 } { \cot{(24\ensurement{^{\circ}})} + \cot{(24\ensurement{^{\circ}})} } } \right)\\\\  Area = \dfrac{3^2}{2} \cdot   \left( \dfrac{ 1 } { 2\cdot \cot{(24\ensurement{^{\circ}})} } } \right)\\\\  \boxed{  Area = \dfrac{3^2}{4} \cdot \tan{(24\ensurement{^{\circ}})} } } \\\\  Area = \dfrac{3^2}{4} \cdot 0.4452286853\\\\  Area = \dfrac{9}{4} \cdot 0.4452286853\\\\  Area = 1.0017645419

.
10.05.2015
 #1
avatar+26396 
+5

How many triangles do we have at:

  1. Step 6 ?
  2. Step 8 ?
  3. Step 19 ?
  4. Step 50 ?

I. The "empty" triangles in the middle are included:

s1=1=1=1s2=3s1+1=4=1+3s3=3s2+1=13=1+3+32s4=3s3+1=40=1+3+32+33s5=3s4+1=121=1+3+32+33+34s6=3s5+1=364=1+3+32+33+34+35sn=3sn1+1=3n12

 

a.)s6=3612=364b.)s8=3812=9841c.)s19=31912=581130733d.)s50=35012=358 948 993 845 926 294 385 124

 

II. The "empty" triangles in the middle aren't included:

s1=1=1=30s2=3s1=3=31s3=3s2=9=32s4=3s3=27=33s5=3s4=81=34s6=3s5=243=35sn=3sn1=3n1

 

a.)s6=35=243b.)s8=37=2187c.)s19=318=387420489d.)s50=349=239 299 329 230 617 529 590 083

.
10.05.2015
 #4
avatar+26396 
+8

Trapez ABCD

Strecke AD e mal Wurzel 6

Strecke CD e mal wurzel 2

Winkel bei C 120° Winkel bei D 135°

Umfang und Flächeninhalt nur mit e und Wurzeln berechnen

a=¯AD=e6b=¯CD=e2c=¯CB=\?d=¯AB=p+b+qα=ADC=135\ensurementβ=DCB=120\ensurementcos(α90\ensurement)=hah=acos(α90\ensurement)h=e6cos(13590\ensurement)h=e6cos(45\ensurement)|cos(45\ensurement)=22h=e622h=e432h=e232h=e3

sin(α90\ensurement)=pap=asin(α90\ensurement)p=e6sin(13590\ensurement)p=e6sin(45\ensurement)|sin(45\ensurement)=22p=e622p=e432p=e232p=e3

tan(180\ensurementβ)=hqq=htan(180\ensurementβ)q=e3tan(180\ensurement120\ensurement)q=e3tan(60\ensurement)|tan(60\ensurement)=3q=e33q=e

\begin{array}{rcl}  \sin{( 180\ensurement{^{\circ}} - \beta)}&=&\dfrac{h}{c}\\  c &=& \dfrac{ h } { \sin{( 180\ensurement{^{\circ}} - \beta)} } \\\\  c &=& \dfrac{ e\sqrt{3} } { \sin{( 180\ensurement{^{\circ}} - 120\ensurement{^{\circ}} )} } \\\\  c &=& \dfrac{ e\sqrt{3} } { \sin{( 60\ensurement{^{\circ}} )} }  \quad | \quad \sin{( 60\ensurement{^{\circ}}) } = \dfrac{1}{2}\sqrt{3} \\\\  c &=&\dfrac{ e\sqrt{3} } {\dfrac{1}{2}\sqrt{3} }\\\\  c &=& 2e  \end{array}  $}}

 

d=p+b+qd=e3+e2+eU=a+b+c+dU=e6+e2+2e+e3+e2+eU=3e+2e2+e3+e6U=e(3+22+3+6)

\boxed{  U&=& e \left( 3 +2\sqrt{2}+ \sqrt{3} + \sqrt{6} \right)  }

 

A=(d+b2 )hA=(e3+e2+e+e22 )e3A=(e+2e2+e32 )e3A=(e+2e2+e3)e32A=(1+22+3)e232

A=(1+22+3)e232

.
10.05.2015
 #1
avatar+26396 
+15

1 - cos(2x) + cos(6x) - cos(8x) = 0       x =?

\small{\text{$  \begin{array}{rcl}  1-\cos{(2x)}+\cos{(6x)}-\cos{(8x)}&=&0\\  1-\cos{(2x)} &=&\cos{(8x)}-\cos{(6x)}\\  &&$Formula:\\  &&  $~\boxed{\mathbf{ \cos{2x}=1-2\sin^2{(x)} \quad or \quad 1-\cos{2x}=2\sin^2{(x)} }}\\  2\sin^2{(x)} &=& \cos{(8x)}-\cos{(6x)}\\  &&$Formula:\\  &&  $~\boxed{\mathbf{   \cos{(a)}-\cos{(b)}=2\sin{ \left( \dfrac{a+b}{2} \right)}\sin{ \left( \dfrac{b-a}{2} \right)}  }}\\  &&  \cos{(8x)}-\cos{(6x)}=2\sin{ \left( \dfrac{14x}{2} \right)}\sin{ \left( \dfrac{-2x}{2} \right)}\\  &&  \cos{(8x)}-\cos{(6x)}= -2\sin{ (7x) }\sin{(x)}\\  2\sin^2{(x)} &=& -2\sin{ (7x) }\sin{(x)}\\  \sin^2{(x)} &=& -\sin{ (7x) }\sin{(x)}\\  \sin^2{(x)} +\sin{ (7x) }\sin{(x)} &=& 0\\  \sin{(x)} \left[ \sin{(x)} + \sin{ (7x) } \right] &=& 0\\  &&$Formula:\\  &&  $~\boxed{\mathbf{   \sin{(a)}+\sin{(b)}=2\sin{ \left( \dfrac{a+b}{2} \right)}\cos{ \left( \dfrac{b-a}{2} \right)}  }}\\  &&  \sin{(x)}+\sin{(7x)}=2\sin{ \left( \dfrac{8x}{2} \right)}\cos{ \left( \dfrac{6x}{2} \right)}\\  &&  \sin{(x)}+\sin{(7x)}=2\sin{ (4x) }\cos{ (3x) }\\  \sin{(x)}\cdot 2 \cdot\sin{ (4x) }\cos{ (3x) } &=& 0\\   \end{array}  $}}

The solution set of the given equation is:

\\\boxed{\mathbf{  \sin{(x)}=0 \qquad \textcolor[rgb]{150,0,0}{x = k\cdot\pi \qquad k \in \mathrm{Z} }  }}\\  \boxed{\mathbf{  \sin{(4x)}=0 \qquad 4x = k\cdot \pi \qquad \textcolor[rgb]{150,0,0}{x = k\cdot \dfrac{\pi}{4} \qquad k \in \mathrm{Z} }  }}\\  \boxed{\mathbf{  \cos{(3x)}=0 \qquad 3x = \pm \dfrac{\pi}{2}+ k\cdot 2\cdot \pi \qquad \textcolor[rgb]{150,0,0}{x = \pm\dfrac{\pi}{6}   + k\cdot \dfrac{2}{3}~\pi \qquad k \in \mathrm{Z} }  }}

.
08.05.2015
 #1
avatar+26396 
+10

cos( atan( sqrt(3) )+asin(1/3) ) ?

cos( arctan( 3 )+arcsin(13) )= ?

 

cos(αrad+βrad)=cos(αrad)cos(βrad)sin(αrad)sin(βrad)αrad=arctan(a)a=3βrad=arcsin(b)b=13

cos(αrad+βrad)=cos(arctan(a))cos(arcsin(b))sin(arctan(a))sin(arcsin(b))=cos(arctan(a))cos(arcsin(b))sin(arctan(a))b

 cos( arctan(a) )=±11+a2=±11+(3)2=±12

 cos( arcsin(b) )=±1b2=±1+(13)2=±83

 sin( arctan(a) )=±a1+a2=±31+(3)2=±32

cos(αrad+βrad)=(±12)(±83)(±32)(13)=16(±8±3)

cos( arctan( 3 )+arcsin(13) )=16(+8+3)=0.76007965539=16(+83)=0.18272938620=16(8+3)=0.18272938620=16(83)=0.76007965539

 

 

08.05.2015