heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #4
avatar+26387 
+8

Trapez ABCD

Strecke AD e mal Wurzel 6

Strecke CD e mal wurzel 2

Winkel bei C 120° Winkel bei D 135°

Umfang und Flächeninhalt nur mit e und Wurzeln berechnen

$$\\
\small{\text{$
\begin{array}{rcl}
a=\overline{AD}=e\sqrt{6}\quad
b=\overline{CD}=e\sqrt{2}\quad
c=\overline{CB}= \?\quad
d=\overline{AB}=p+b+q\quad
\alpha=ADC = 135 \ensurement{^{\circ}}\quad
\beta=DCB = 120 \ensurement{^{\circ}}
\end{array}
$}}\\
\small{\text{$
\begin{array}{rcl}
\cos{(\alpha-90\ensurement{^{\circ}})}&=&\dfrac{h}{a}\\
h &=& a\cdot \cos{(\alpha-90\ensurement{^{\circ}})}\\
h &=& e\sqrt{6} \cdot \cos{(135-90\ensurement{^{\circ}})}\\
h &=& e\sqrt{6} \cdot \cos{(45\ensurement{^{\circ}})} \quad | \quad \cos{(45\ensurement{^{\circ}})} = \dfrac{ \sqrt{2} } {2}\\
h &=& e\sqrt{6} \cdot \dfrac{ \sqrt{2} } {2}\\
h &=& e \cdot \dfrac{ \sqrt{4\cdot 3} } {2}\\
h &=& e \cdot 2 \cdot \dfrac{ \sqrt{3} } {2}\\
h &=& e \sqrt{3} \\
\end{array}
$}}$$

$$\small{\text{$
\begin{array}{rcl}
\sin{(\alpha-90\ensurement{^{\circ}})}&=&\dfrac{p}{a}\\
p &=& a\cdot \sin{(\alpha-90\ensurement{^{\circ}})}\\
p &=& e\sqrt{6} \cdot \sin{(135-90\ensurement{^{\circ}})}\\
p &=& e\sqrt{6} \cdot \sin{(45\ensurement{^{\circ}})} \quad | \quad \sin{(45\ensurement{^{\circ}})} = \dfrac{ \sqrt{2} } {2}\\
p &=& e\sqrt{6} \cdot \dfrac{ \sqrt{2} } {2}\\
p &=& e \cdot \dfrac{ \sqrt{4\cdot 3} } {2}\\
p &=& e \cdot 2 \cdot \dfrac{ \sqrt{3} } {2}\\
p &=& e \sqrt{3} \\
\end{array}
$}}$$

$$\small{\text{$
\begin{array}{rcl}
\tan{( 180\ensurement{^{\circ}} - \beta)}&=&\dfrac{h}{q}\\
q &=& \dfrac{ h } { \tan{( 180\ensurement{^{\circ}} - \beta)} } \\\\
q &=& \dfrac{ e\sqrt{3} } { \tan{( 180\ensurement{^{\circ}} - 120\ensurement{^{\circ}} )} } \\\\
q &=& \dfrac{ e\sqrt{3} } { \tan{( 60\ensurement{^{\circ}} )} }
\quad | \quad \tan{( 60\ensurement{^{\circ}}) } = \sqrt{3} \\\\
q &=&\dfrac{ e\sqrt{3} } { \sqrt{3} }\\\\
q &=& e
\end{array}
$}}$$

$$\begin{array}{rcl}
\sin{( 180\ensurement{^{\circ}} - \beta)}&=&\dfrac{h}{c}\\
c &=& \dfrac{ h } { \sin{( 180\ensurement{^{\circ}} - \beta)} } \\\\
c &=& \dfrac{ e\sqrt{3} } { \sin{( 180\ensurement{^{\circ}} - 120\ensurement{^{\circ}} )} } \\\\
c &=& \dfrac{ e\sqrt{3} } { \sin{( 60\ensurement{^{\circ}} )} }
\quad | \quad \sin{( 60\ensurement{^{\circ}}) } = \dfrac{1}{2}\sqrt{3} \\\\
c &=&\dfrac{ e\sqrt{3} } {\dfrac{1}{2}\sqrt{3} }\\\\
c &=& 2e
\end{array}
$}}$$

 

$$\\d = p + b + q \qquad d = e\sqrt{3}+ e\sqrt{2} + e\\\\
\begin{array}{rcl}
U&=&a+b+c+d \\
U&=& e\sqrt{6} +e\sqrt{2} + 2e+e\sqrt{3}+ e\sqrt{2} + e\\
U&=& 3e +2e\sqrt{2}+ e\sqrt{3} + e\sqrt{6}\\
U&=& e \left( 3 +2\sqrt{2}+ \sqrt{3} + \sqrt{6} \right)
\end{array}$$

$$\boxed{
U&=& e \left( 3 +2\sqrt{2}+ \sqrt{3} + \sqrt{6} \right)
}$$

 

$$\begin{array}{rcl}
A&=& \left( \dfrac{d+b}{2}\ \right) \cdot h\\\\
A&=& \left( \dfrac{ e\sqrt{3}+ e\sqrt{2} + e+ e\sqrt{2} }{2}\ \right) \cdot e\sqrt{3}\\\\
A&=& \left( \dfrac{ e + 2e\sqrt{2} + e\sqrt{3} }{2}\ \right) \cdot e\sqrt{3}\\\\
A&=& \left( e + 2e\sqrt{2} + e\sqrt{3} \right)
\cdot \dfrac{ e\sqrt{3} } {2}\\\\
A&=& \left( 1 + 2\sqrt{2} + \sqrt{3} \right)
\cdot \dfrac{ e^2\sqrt{3} } {2}
\end{array}$$

$$\boxed{
A= \left( 1 + 2\sqrt{2} + \sqrt{3} \right)
\cdot \dfrac{ e^2\sqrt{3} } {2}
}$$

.
10.05.2015
 #1
avatar+26387 
+15

1 - cos(2x) + cos(6x) - cos(8x) = 0       x =?

$$\small{\text{$
\begin{array}{rcl}
1-\cos{(2x)}+\cos{(6x)}-\cos{(8x)}&=&0\\
1-\cos{(2x)} &=&\cos{(8x)}-\cos{(6x)}\\
&&$Formula:\\
&&
$~\boxed{\mathbf{ \cos{2x}=1-2\sin^2{(x)} \quad or \quad 1-\cos{2x}=2\sin^2{(x)} }}\\
2\sin^2{(x)} &=& \cos{(8x)}-\cos{(6x)}\\
&&$Formula:\\
&&
$~\boxed{\mathbf{
\cos{(a)}-\cos{(b)}=2\sin{ \left( \dfrac{a+b}{2} \right)}\sin{ \left( \dfrac{b-a}{2} \right)}
}}\\
&&
\cos{(8x)}-\cos{(6x)}=2\sin{ \left( \dfrac{14x}{2} \right)}\sin{ \left( \dfrac{-2x}{2} \right)}\\
&&
\cos{(8x)}-\cos{(6x)}= -2\sin{ (7x) }\sin{(x)}\\
2\sin^2{(x)} &=& -2\sin{ (7x) }\sin{(x)}\\
\sin^2{(x)} &=& -\sin{ (7x) }\sin{(x)}\\
\sin^2{(x)} +\sin{ (7x) }\sin{(x)} &=& 0\\
\sin{(x)} \left[ \sin{(x)} + \sin{ (7x) } \right] &=& 0\\
&&$Formula:\\
&&
$~\boxed{\mathbf{
\sin{(a)}+\sin{(b)}=2\sin{ \left( \dfrac{a+b}{2} \right)}\cos{ \left( \dfrac{b-a}{2} \right)}
}}\\
&&
\sin{(x)}+\sin{(7x)}=2\sin{ \left( \dfrac{8x}{2} \right)}\cos{ \left( \dfrac{6x}{2} \right)}\\
&&
\sin{(x)}+\sin{(7x)}=2\sin{ (4x) }\cos{ (3x) }\\
\sin{(x)}\cdot 2 \cdot\sin{ (4x) }\cos{ (3x) } &=& 0\\
\end{array}
$}}$$

The solution set of the given equation is:

$$\\\boxed{\mathbf{
\sin{(x)}=0 \qquad \textcolor[rgb]{150,0,0}{x = k\cdot\pi \qquad k \in \mathrm{Z} }
}}\\
\boxed{\mathbf{
\sin{(4x)}=0 \qquad 4x = k\cdot \pi \qquad \textcolor[rgb]{150,0,0}{x = k\cdot \dfrac{\pi}{4} \qquad k \in \mathrm{Z} }
}}\\
\boxed{\mathbf{
\cos{(3x)}=0 \qquad 3x = \pm \dfrac{\pi}{2}+ k\cdot 2\cdot \pi \qquad \textcolor[rgb]{150,0,0}{x = \pm\dfrac{\pi}{6}
+ k\cdot \dfrac{2}{3}~\pi \qquad k \in \mathrm{Z} }
}}$$

.
08.05.2015
 #1
avatar+26387 
+10

cos( atan( sqrt(3) )+asin(1/3) ) ?

$$\boxed{
\mathbf{
\cos{ \left(~ \arctan{(~\sqrt{3}~)}
+ \arcsin{\left(\dfrac{1}{3}\right)}
~\right)
}
} =~ ?
}$$

 

$$\small{\text{$
\begin{array}{rcl}
\mathbf{
\cos{ \left(\alpha_{rad} + \beta_{rad} \right) }
= \cos{ \left(\alpha_{rad} \right) } \cdot
\cos{ \left(\beta_{rad} \right) }
- \sin{ \left(\alpha_{rad} \right) } \cdot
\sin{ \left(\beta_{rad} \right) }
} & \quad \mathbf{
\alpha_{rad} = \arctan{(a)} \quad a= \sqrt{3} } \\
& \mathbf{
\quad \beta_{rad} = \arcsin{(b)} \quad b= \dfrac{1}{3} }
\end{array}
$}}$$

$$\small{\text{$
\begin{array}{rcl}
\cos{ \left( \alpha_{rad}+ \beta_{rad} \right) }
&=&
\cos{ \left( \arctan{(a)} \right) } \cdot
\cos{ \left(\arcsin{(b)} \right) }
- \sin{ \left( \arctan{(a)} \right) } \cdot
\sin{ \left(\arcsin{(b)} \right) } \\
&=&
\cos{ \left( \arctan{(a)} \right) } \cdot
\cos{ \left(\arcsin{(b)} \right) }
- \sin{ \left( \arctan{(a)} \right) } \cdot b
\end{array}
$}}$$

$$\small{\text{
$
\boxed{
\cos{ \left(~ \arctan{(a)} ~\right) }
=\pm\dfrac{1}{\sqrt{1+a^2}}
=\pm\dfrac{1}{\sqrt{1+(\sqrt{3})^2}}
=\pm \dfrac{1}{2}
}
$}}$$

$$\small{\text{
$
\boxed{
\cos{ \left(~ \arcsin{(b)} ~\right) }
=\pm\sqrt{1-b^2}
=\pm \sqrt{1+ \left( \dfrac{1}{3} \right)^2}
=\pm \dfrac{\sqrt{8} }{ 3 }
}
$}}$$

$$\small{\text{
$
\boxed{
\sin{ \left(~ \arctan{(a)} ~\right) }
=\pm\dfrac{a}{\sqrt{1+a^2}}
=\pm\dfrac{ \sqrt{3} }{\sqrt{1+(\sqrt{3})^2}}
=\pm \dfrac{ \sqrt{3} }{2}
}
$}}$$

$$\small{\text{$
\begin{array}{rcl}
\cos{ \left( \alpha_{rad}+ \beta_{rad} \right) }
&=&
\left( \pm \dfrac{1}{2} \right) \cdot
\left( \pm \dfrac{ \sqrt{8} }{ 3 } \right)
-\left( \pm \dfrac{ \sqrt{3} }{ 2 } \right) \cdot
\left( \dfrac{1}{3} \right) \\
&=& \dfrac{1}{6} \left( \pm \sqrt{8} \pm\sqrt{3} \right)
\end{array}
$}}$$

$$\small{\text{$
\begin{array}{rcl}
\cos{ \left(~ \arctan{(~\sqrt{3}~)}
+ \arcsin{\left(\dfrac{1}{3}\right)} ~\right)
}
&=& \dfrac{1}{6} \left( + \sqrt{8} + \sqrt{3} \right)
= 0.76007965539 \\\\
&=& \dfrac{1}{6} \left( + \sqrt{8} - \sqrt{3} \right)
= 0.18272938620 \\\\
&=& \dfrac{1}{6} \left( - \sqrt{8} + \sqrt{3} \right)
= -0.18272938620 \\\\
&=& \dfrac{1}{6} \left( - \sqrt{8} - \sqrt{3} \right)
= -0.76007965539
\end{array}
$}}$$

 

 

08.05.2015