Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
843
2
avatar

Find the exact values of tan (cos^-1(2/3)) and cos (sin^-1(-3/5)).

 May 7, 2015

Best Answer 

 #2
avatar+26396 
+5

Find the exact values of tan (cos^-1(2/3)) and cos (sin^-1(-3/5)).

 

tan (cos^-1(2/3))

 

tan( arccos(x) )=±1x2x=±1(23)223=±32149=±3253=±52

 

cos (sin^-1(-3/5))

cos( arcsin(x) )=±1x2=±1+(35)2=±345

 May 8, 2015
 #1
avatar+33654 
+5

Think of a right-angled triangle.  If the cosine of an angle is 2/3, the side adjacent to the angle is proportional to 2 and the hypotenuse is proportional to 3, so the opposite side is proportional to √(32 - 22) = √5.

 

Since tan of the angle is opposite/adjacent then tan(cos-1(2/3)) = (√5)/2

 

See if you can do something similar with the other one (remembering that in the fourth quadrant sin is negative but cos is positive).

.

 May 7, 2015
 #2
avatar+26396 
+5
Best Answer

Find the exact values of tan (cos^-1(2/3)) and cos (sin^-1(-3/5)).

 

tan (cos^-1(2/3))

 

tan( arccos(x) )=±1x2x=±1(23)223=±32149=±3253=±52

 

cos (sin^-1(-3/5))

cos( arcsin(x) )=±1x2=±1+(35)2=±345

heureka May 8, 2015

3 Online Users

avatar
avatar