cos( atan( sqrt(3) )+asin(1/3) ) ?
cos( arctan( √3 )+arcsin(13) )= ?
cos(αrad+βrad)=cos(αrad)⋅cos(βrad)−sin(αrad)⋅sin(βrad)αrad=arctan(a)a=√3βrad=arcsin(b)b=13
cos(αrad+βrad)=cos(arctan(a))⋅cos(arcsin(b))−sin(arctan(a))⋅sin(arcsin(b))=cos(arctan(a))⋅cos(arcsin(b))−sin(arctan(a))⋅b
cos( arctan(a) )=±1√1+a2=±1√1+(√3)2=±12
cos( arcsin(b) )=±√1−b2=±√1+(13)2=±√83
sin( arctan(a) )=±a√1+a2=±√3√1+(√3)2=±√32
cos(αrad+βrad)=(±12)⋅(±√83)−(±√32)⋅(13)=16(±√8±√3)
cos( arctan( √3 )+arcsin(13) )=16(+√8+√3)=0.76007965539=16(+√8−√3)=0.18272938620=16(−√8+√3)=−0.18272938620=16(−√8−√3)=−0.76007965539
cos( atan( sqrt(3) )+asin(1/3) ) ?
cos( arctan( √3 )+arcsin(13) )= ?
cos(αrad+βrad)=cos(αrad)⋅cos(βrad)−sin(αrad)⋅sin(βrad)αrad=arctan(a)a=√3βrad=arcsin(b)b=13
cos(αrad+βrad)=cos(arctan(a))⋅cos(arcsin(b))−sin(arctan(a))⋅sin(arcsin(b))=cos(arctan(a))⋅cos(arcsin(b))−sin(arctan(a))⋅b
cos( arctan(a) )=±1√1+a2=±1√1+(√3)2=±12
cos( arcsin(b) )=±√1−b2=±√1+(13)2=±√83
sin( arctan(a) )=±a√1+a2=±√3√1+(√3)2=±√32
cos(αrad+βrad)=(±12)⋅(±√83)−(±√32)⋅(13)=16(±√8±√3)
cos( arctan( √3 )+arcsin(13) )=16(+√8+√3)=0.76007965539=16(+√8−√3)=0.18272938620=16(−√8+√3)=−0.18272938620=16(−√8−√3)=−0.76007965539