Processing math: 100%
 
+0  
 
0
1380
2
avatar

The sequence x_1x_2x_3, . . ., has the property that x_n = x_{n - 1} + x_{n - 2} for all n \ge 3. If x_{11} - x_1 = 99, then determine x_6.

 Jan 31, 2015

Best Answer 

 #1
avatar+26397 
+10

The sequence x_1x_2x_3, . . ., has the property that x_n = x_{n - 1} + x_{n - 2} for all n \ge 3.

If x_{11} - x_1 = 99, then determine x_6.

 x11=x10+x9=(x9+x8)+x9=2x9+x8=2x9+x8=2(x8+x7)+x8=3x8+2x7=3x8+2x7=3(x7+x6)+2x7=5x7+3x6=5x7+3x6=5(x6+x5)+3x6=8x6+5x5=8x6+5x5=8(x5+x4)+5x5=13x5+8x4=13x5+8x4=13(x4+x3)+8x4=21x4+13x3=21x4+13x3=21(x3+x2)+13x3=34x3+21x2=34x3+21x2=34(x2+x1)+21x2=55x2+34x1 x11=55x2+34x1

x_{11} - x_1 = 99 

55x2+34x1x1=9955x2+33x1=99|:115x2+3x1=9 

 x3==x2+x1x4=x3+x2=2x2+x1x5=x4+x3=3x2+2x1x6=x5+x4=5x2+3x1 x6=5x2+3x1=9

 Feb 1, 2015
 #1
avatar+26397 
+10
Best Answer

The sequence x_1x_2x_3, . . ., has the property that x_n = x_{n - 1} + x_{n - 2} for all n \ge 3.

If x_{11} - x_1 = 99, then determine x_6.

 x11=x10+x9=(x9+x8)+x9=2x9+x8=2x9+x8=2(x8+x7)+x8=3x8+2x7=3x8+2x7=3(x7+x6)+2x7=5x7+3x6=5x7+3x6=5(x6+x5)+3x6=8x6+5x5=8x6+5x5=8(x5+x4)+5x5=13x5+8x4=13x5+8x4=13(x4+x3)+8x4=21x4+13x3=21x4+13x3=21(x3+x2)+13x3=34x3+21x2=34x3+21x2=34(x2+x1)+21x2=55x2+34x1 x11=55x2+34x1

x_{11} - x_1 = 99 

55x2+34x1x1=9955x2+33x1=99|:115x2+3x1=9 

 x3==x2+x1x4=x3+x2=2x2+x1x5=x4+x3=3x2+2x1x6=x5+x4=5x2+3x1 x6=5x2+3x1=9

heureka Feb 1, 2015
 #2
avatar+130477 
+3

Very nice, heureka......the additions on the right hand side are numbers in the Fibonacci series..!!!

 

 Feb 1, 2015

0 Online Users