a + 1/a = 6 multiply through by a
a^2 + 1 = 6a rearrange
a^2 -6a + 1 = 0 and using the quadratic formula, we find that a = 3 ±√8
And a^3 + 1/a^3 factors as
(a + 1/a)(a^2 -1 + 1/a^2) and (a + 1/a) = 6 ...so we have
6(a^2 - 1 + 1/a^2)
If a= 3 + √8 we have
6[ (3 + √8)^2 - 1 + 1 / (3 +√8)^2 ] =
6 [ (9 + 6√8 + 8 - 1 + 1/ (9 + 6√8 + 8 ] =
6 [ 16 + 6√8 + 1/ (17 + 6√8)] and using the conjugate, (17 - 6√8), we have
6[ 16 + 6√8 + (17 - 6√8) / (289 - 288)]=
6[16 + 6√8 + (17 - 6√8) / 1] =
6[16 + 6√8 + (17 - 6√8)] =
6[ 16 + 17] = 198
And if a = 3 - √8 we have
6[ (3 - √8)^2 - 1 + 1 / (3 -√8)^2 ] =
6 [ (9 - 6√8 + 8 - 1 + 1/ (9 - 6√8 + 8 ] =
6 [ 16 - 6√8 + 1/ (17 - 6√8)] and using the conjugate, (17 + 6√8) we have
6[ 16 - 6√8 + (17 + 6√8) / (289 - 288)]=
6[16 - 6√8 + (17 + 6√8) / 1] =
6[16 - 6√8 + (17 + 6√8)] =
6[ 16 + 17] = 198
Exactly the same result !!!
And that's the evaluation of a^3 + 1/a^3......
(a3+b3)=(a+b)(a2−ab+b2)(a3+b3)=(a+b)(a2−ab+b2+3ab−3ab)(a3+b3)=(a+b)(a2+2ab+b2−3ab)(a3+b3)=(a+b)((a+b)2−3ab)Butb=1aanda+b=6(a3+1a3)=(6)((6)2−3a∗1a)(a3+1a3)=(6)(36−3)(a3+1a3)=(6)(33)(a3+1a3)=198