Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1012
5
avatar

Evaluate a^3 + \dfrac{1}{a^3} if a+\dfrac{1}{a} = 6.

 Jan 31, 2015

Best Answer 

 #3
avatar+118703 
+10

 

(a3+b3)=(a+b)(a2ab+b2)(a3+b3)=(a+b)(a2ab+b2+3ab3ab)(a3+b3)=(a+b)(a2+2ab+b23ab)(a3+b3)=(a+b)((a+b)23ab)Butb=1aanda+b=6(a3+1a3)=(6)((6)23a1a)(a3+1a3)=(6)(363)(a3+1a3)=(6)(33)(a3+1a3)=198

.
 Feb 1, 2015
 #1
avatar+130477 
+10

a + 1/a = 6   multiply through by a

a^2 + 1 = 6a    rearrange

a^2  -6a + 1 = 0    and using the quadratic formula, we find that a = 3 ±√8

 

And  a^3 + 1/a^3  factors as

(a + 1/a)(a^2 -1 + 1/a^2)      and (a + 1/a) = 6 ...so we have

6(a^2 - 1 + 1/a^2)

If a= 3 + √8 we have

6[ (3 + √8)^2 - 1 + 1 / (3 +√8)^2 ] =

6 [ (9 + 6√8 + 8 - 1 + 1/ (9 + 6√8 + 8 ] =

6 [ 16 + 6√8 + 1/ (17 + 6√8)]    and using the conjugate, (17 - 6√8), we have

6[ 16 + 6√8 + (17  - 6√8) / (289 - 288)]=

6[16 + 6√8 + (17  - 6√8) / 1] =

6[16 + 6√8 + (17  - 6√8)] =

6[ 16 + 17] = 198    

 

And if a = 3 - √8   we have

6[ (3 - √8)^2 - 1 + 1 / (3 -√8)^2 ] =

6 [ (9 - 6√8 + 8 - 1 + 1/ (9 - 6√8 + 8 ] =

6 [ 16 - 6√8 + 1/ (17 - 6√8)]    and using the conjugate, (17 + 6√8) we have

6[ 16 - 6√8 + (17  + 6√8) / (289 - 288)]=

6[16 - 6√8 + (17  + 6√8) / 1] =

6[16 - 6√8 + (17  + 6√8)] =

6[ 16 + 17] = 198 

 

Exactly the same result !!!  

And that's the evaluation of  a^3 + 1/a^3......

 

 

 Jan 31, 2015
 #2
avatar+26397 
+10

Evaluate

 a^3 + \dfrac{1}{a^3} 

if

 a+\dfrac{1}{a} = 6.

(a+1a)3=63a3+3a21a+3a1a2+1a3=63a3+3a+31a+1a3=63a3+1a3+3a+31a=63a3+1a3+3(a+1a)=6=63a3+1a3+36=63a3+1a3=6336a3+1a3=6(623)a3+1a3=6(33)a3+1a3=198

 Feb 1, 2015
 #3
avatar+118703 
+10
Best Answer

 

(a3+b3)=(a+b)(a2ab+b2)(a3+b3)=(a+b)(a2ab+b2+3ab3ab)(a3+b3)=(a+b)(a2+2ab+b23ab)(a3+b3)=(a+b)((a+b)23ab)Butb=1aanda+b=6(a3+1a3)=(6)((6)23a1a)(a3+1a3)=(6)(363)(a3+1a3)=(6)(33)(a3+1a3)=198

Melody Feb 1, 2015
 #4
avatar+130477 
0

Compared to Melody and heureka.....I made that WAY too complicated...!!!

But, as Melody has said, "All roads lead to Rome!!!

 

 Feb 1, 2015
 #5
avatar+118703 
0

That is true Chris, that is soooo true   LOL

 Feb 1, 2015

1 Online Users