Let P=41/4⋅161/16⋅641/64⋅2561/256⋯Then $P$ can be expressed in the form $\sqrt[a]{b},$ where $a$ and $b$ are positive integers. Find the smallest possible value of $a + b.$
Let P=41/4⋅161/16⋅641/64⋅2561/256⋯
Then P can be expressed in the form a√b,
where a and b are positive integers.
Find the smallest possible value of a+b
P=41/4⋅161/16⋅641/64⋅2561/256⋯P=2121⋅2223⋅2325⋅2427⋯2(n22n−1)⋯P=2121+223+325+427+⋯+n22n−1+⋯P=2S∞Sn=121+223+325+427+⋯+n22n−1122Sn=123+225+327+⋯+n−122n−1+n22n+1Sn−122Sn=121+123+125+127+⋯+122n−1−n22n+134Sn=s−n22n+1(1)s=121+123+125+127+⋯+122n−1122s=123+125+127+⋯+122n−1+122n+1s−122s=121−122n+134s=121−122n+1s=43∗(121−122n+1)34Sn=s−n22n+1(1)34Sn=43∗(121−122n+1)−n22n+134S∞=43∗(121−0)−034S∞=23S∞=43∗23S∞=89P=2S∞P=289P=9√28P=9√256
a+b=9+256a+b=265