Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
-1
582
4
avatar+-37 

Let P=41/4161/16641/642561/256Then $P$ can be expressed in the form $\sqrt[a]{b},$ where $a$ and $b$ are positive integers. Find the smallest possible value of $a + b.$

 Aug 4, 2021
 #1
avatar
+2

The product is equal to $4^{1/3} = \sqrt[3]{4}$, so a + b = 7.

 Aug 4, 2021
 #2
avatar-37 
-1

I entered the answer and it said it is wrong.

 Aug 4, 2021
 #3
avatar+26396 
+2

Let P=41/4161/16641/642561/256
Then P can be expressed in the form ab,
where a and b are positive integers.
Find the smallest possible value of a+b

 

P=41/4161/16641/642561/256P=21212223232524272(n22n1)P=2121+223+325+427++n22n1+P=2SSn=121+223+325+427++n22n1122Sn=123+225+327++n122n1+n22n+1Sn122Sn=121+123+125+127++122n1n22n+134Sn=sn22n+1(1)s=121+123+125+127++122n1122s=123+125+127++122n1+122n+1s122s=121122n+134s=121122n+1s=43(121122n+1)34Sn=sn22n+1(1)34Sn=43(121122n+1)n22n+134S=43(1210)034S=23S=4323S=89P=2SP=289P=928P=9256

 

a+b=9+256a+b=265

 

laugh

 Aug 4, 2021

0 Online Users