Given 4*10^(2-x)=3*e^(2x+3) what would be the value of x?
4∗102−x=3∗e2x+3102−x=e(2−x)ln(10)4∗e(2−x)ln(10)=3∗e2x+343=e2x+3e(2−x)ln(10)43=e2x+3−(2−x)ln(10)43=e2x+3−2ln(10)+xln(10)ln(43)=ln(e2x+3−2ln(10)+xln(10))ln(43)=2x+3−2ln(10)+xln(10)2x+xln(10)=ln(43)+2ln(10)−3x(2+ln(10))=ln(43)+ln(102)−3x(2+ln(10))=ln(4∗1023)−3x(2+ln(10))=ln(4003)−3x=ln(4003)−32+ln(10)