if z is a complex number such that z+1/z=√3
what is the value of z2010+1/z2010?
Thanks for any hints, help, or answers!
if z is a complex number such that z+1z=√3
what is the value of z2010+1z2010?
1. |z|= ?
z+1z=√3|Let z=a+bia+bi+1a+bi=√3a+bi+1(a+bi)∗(a−bi)(a−bi)=√3|(a+bi)∗(a−bi)=|z|2a+bi+a−bi|z|2=√3a+a|z|2⏟=√3+bi−bi|z|2⏟=0=√3bi−bi|z|2=0bi=bi|z|2|z|2=bibi|z|2=1or|z|=1
2. φ= ?
z=|z|∗eiφ||z|=1z=eiφz=cos(φ)+i∗sin(φ)1z=z−1=(|z|∗eiφ)−1=|z|−1∗(eiφ)−1=1|z|∗eiφ(−1)=1|z|∗ei(−φ||z|=1=ei(−φ=cos(−φ)+i∗sin(−φ)1z=cos(φ)−i∗sin(φ)z+1z=cos(φ)+i∗sin(φ)+cos(φ)−i∗sin(φ)z+1z=2cos(φ)|z+1z=√3√3=2cos(φ)cos(φ)=√32φ=30∘
3. z2010= ?
z2010=(|z|∗eiφ)2010=|z|2010∗(eiφ)2010=12010∗ei∗2010φ=ei∗2010φ=cos(2010φ)+i∗sin(2010φ)|φ=30∘=cos(2010∗30∘)+i∗sin(2010∗30∘)=cos(180∘)+i∗sin(180∘)z2010=−1
4. 1z2010= ?
1z2010=(|z|∗eiφ)−2010=|z|−2010∗(eiφ)−2010=1−2010∗ei∗(−2010φ)=ei∗(−2010φ)=cos(−2010φ)+i∗sin(−2010φ)=cos(2010φ)−i∗sin(2010φ)|φ=30∘=cos(2010∗30∘)−i∗sin(2010∗30∘)=cos(180∘)−i∗sin(180∘)1z2010=−1
z2010+1z2010=−1+(−1)z2010+1z2010=−2