There exist several positive integers x such that 1/(x^2 + 2x) is a terminating decimal. What is the second smallest such integer?
There exist several positive integers x such that
1x2+2x is a terminating decimal.
What is the second smallest such integer?
Terminating decimal, if 2,5|x2+2x
x2+2x=0(mod2)|+1x2+2x+1=1(mod2)(x+1)2=1(mod2)√(x+1)2=√1(mod2)x+1=±1(mod2)x+1=+1(mod2)|−1x=0(mod2)All even numbers: x=0, 2, 4, 6, …x+1=−1(mod2)|−1x=−2(mod2)x=−2+2(mod2)x=0(mod2)All even numbers: x=0, 2, 4, 6, …
x2+2x=0(mod5)|+1x2+2x+1=1(mod5)(x+1)2=1(mod5)√(x+1)2=√1(mod5)x+1=±1(mod5)x+1=+1(mod5)|−1x=0(mod5)x=0, 5, 10, 15, …x+1=−1(mod5)|−1x=−2(mod5)x=−2+5(mod5)x=3(mod5)x=3+5n, n∈Z
positive integers x=2, 3, 4, 5, 6, 8, …
The second smallest such integer is 3
There exist several positive integers x such that
1x2+2x is a terminating decimal.
What is the second smallest such integer?
Terminating decimal, if 2,5|x2+2x
x2+2x=0(mod2)|+1x2+2x+1=1(mod2)(x+1)2=1(mod2)√(x+1)2=√1(mod2)x+1=±1(mod2)x+1=+1(mod2)|−1x=0(mod2)All even numbers: x=0, 2, 4, 6, …x+1=−1(mod2)|−1x=−2(mod2)x=−2+2(mod2)x=0(mod2)All even numbers: x=0, 2, 4, 6, …
x2+2x=0(mod5)|+1x2+2x+1=1(mod5)(x+1)2=1(mod5)√(x+1)2=√1(mod5)x+1=±1(mod5)x+1=+1(mod5)|−1x=0(mod5)x=0, 5, 10, 15, …x+1=−1(mod5)|−1x=−2(mod5)x=−2+5(mod5)x=3(mod5)x=3+5n, n∈Z
positive integers x=2, 3, 4, 5, 6, 8, …
The second smallest such integer is 3