Processing math: 100%
 
+0  
 
0
427
3
avatar

There exist several positive integers x such that 1/(x^2 + 2x) is a terminating decimal. What is the second smallest such integer?

 May 31, 2021

Best Answer 

 #1
avatar+26397 
+2

There exist several positive integers x such that
1x2+2x is a terminating decimal.
What is the second smallest such integer?

 

Terminating decimal, if 2,5|x2+2x

 

x2+2x=0(mod2)|+1x2+2x+1=1(mod2)(x+1)2=1(mod2)(x+1)2=1(mod2)x+1=±1(mod2)x+1=+1(mod2)|1x=0(mod2)All even numbers: x=0, 2, 4, 6, x+1=1(mod2)|1x=2(mod2)x=2+2(mod2)x=0(mod2)All even numbers: x=0, 2, 4, 6, 

 

x2+2x=0(mod5)|+1x2+2x+1=1(mod5)(x+1)2=1(mod5)(x+1)2=1(mod5)x+1=±1(mod5)x+1=+1(mod5)|1x=0(mod5)x=0, 5, 10, 15, x+1=1(mod5)|1x=2(mod5)x=2+5(mod5)x=3(mod5)x=3+5n, nZ

 

positive integers x=2, 3, 4, 5, 6, 8, 

The second smallest such integer is 3

 

laugh

 Jun 2, 2021
 #1
avatar+26397 
+2
Best Answer

There exist several positive integers x such that
1x2+2x is a terminating decimal.
What is the second smallest such integer?

 

Terminating decimal, if 2,5|x2+2x

 

x2+2x=0(mod2)|+1x2+2x+1=1(mod2)(x+1)2=1(mod2)(x+1)2=1(mod2)x+1=±1(mod2)x+1=+1(mod2)|1x=0(mod2)All even numbers: x=0, 2, 4, 6, x+1=1(mod2)|1x=2(mod2)x=2+2(mod2)x=0(mod2)All even numbers: x=0, 2, 4, 6, 

 

x2+2x=0(mod5)|+1x2+2x+1=1(mod5)(x+1)2=1(mod5)(x+1)2=1(mod5)x+1=±1(mod5)x+1=+1(mod5)|1x=0(mod5)x=0, 5, 10, 15, x+1=1(mod5)|1x=2(mod5)x=2+5(mod5)x=3(mod5)x=3+5n, nZ

 

positive integers x=2, 3, 4, 5, 6, 8, 

The second smallest such integer is 3

 

laugh

heureka Jun 2, 2021
 #2
avatar+130477 
0

Nice, heureka   !!!!!

 

 

cool cool cool

CPhill  Jun 2, 2021

0 Online Users