Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26397 
+5

30! [mod 899] ?

30!mod899?=

 899=2931=pq| let p=29 and q=31 so \textcolor[rgb]{1,0,0}{p and q are relatively prim!} 

I.   30!modp=0, because p=29 is divider of 30! (30!=302928...321)  

 30!modp=r, if p=29 we have r=0 

II.  30!modq=sq=31 is a prime number so (311)!1mod31 [Wilson] 

 (311)!1+31mod31 or 30!30mod31 we have s=30 

III. 

Since p  and q  are relatively prime, there are integers a  and b  such that  ap+bq=1. You can find a  and b  using the Extended Euclidean algorithm.

http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

So a=46 and b=-43, so 29*(46) + 31*(-43) = 1

IV.

Then

  30!mod(pq)=aps+bqr30!mod(899)=462930+(43)310=462930=40020 

V.

30!mod899=40020mod899=464

.
21.11.2014
 #2
avatar+26397 
+5

Simplify the radical expression :

1.)  (-1-√2)/(1+√2)

(12)(1+2)=(1+2)(1+2)=1

2.)  (√8)/(√2+3)

82+3=222+32323=27(232)

3.)  (√3)/(√27-√3)

3273=3333=323=12

4.)  (√2-√8)/2(√2-1)

282(21)=2222(21)=22(21)2+12+1=22(2+1)=(1+22)

5.)  (3√3-2√2)/(√3-√2)

3322323+23+2=(3322)(3+2)=9+64=5+6

6.)  (√2-√8)/(2√2-1)

\samll 28221=222221=222122+122+1=27(22+1)=17(4+2) 

7.)  (1-√2)/(1+√2)

 121+21212=(12)(12)=(122+2)=(322)=223 

again 5.) (3√3-2√2)/(√3-√2)

20.11.2014