Find the value of x such that the area of a triangle whose vertices have coordinates (6, 5), (8, 2) and ( x, 11) is 15 square units.
area = \pm15 = \dfrac{ \left| \left[ \left(\begin{array}{c} x\\ 11 \end{array} \right) - \left(\begin{array}{c} 6\\ 5 \end{array} \right) \right] \times\left[ \left(\begin{array}{c} 8\\ 2 \end{array} \right) - \left(\begin{array}{c} 6\\ 5 \end{array} \right) \right] \right| } {2} \\\\ \pm30 = \left| \left[ \left(\begin{array}{c} x\\ 11 \end{array} \right) - \left(\begin{array}{c} 6\\ 5 \end{array} \right) \right] \times\left[ \left(\begin{array}{c} 8\\ 2 \end{array} \right) - \left(\begin{array}{c} 6\\ 5 \end{array} \right) \right] \right| } \\ \pm30 = \left| \left(\begin{array}{c} x-6\\ 11-5 \end{array} \right) \times \left(\begin{array}{c} 8-6\\ 2-5 \end{array} \right) \right| } \\ \pm30 = \left| \left(\begin{array}{c} x-6\\ 6\end{array} \right) \times \left(\begin{array}{c} 2\\ -3\end{array} \right) \right| } \\\\ x_1 =?\\ 30 = \left| \left(\begin{array}{c} x_1-6\\ 6\end{array} \right) \times \left(\begin{array}{c} 2\\ -3\end{array} \right) \right| } \\ (x_1-6)(-3)-6*2=30\\ (x_1-6)(-3)=42\\ (x_1-6)=-14\\ \textcolor[rgb]{1,0,0}{x_1 =-8}\\\\
x_2 =?\\ -30 = \left| \left(\begin{array}{c} x_2-6\\ 6\end{array} \right) \times \left(\begin{array}{c} 2\\ -3\end{array} \right) \right| } \\ (x_2-6)(-3)-6*2=-30\\ (x_2-6)*3+12=30\\ (x_2-6)*3=18\\ x_2-6=6\\ \textcolor[rgb]{1,0,0}{ x_2=12 }
a. is okay
