Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
1564
8
avatar+676 

 

Note: Continuous Fraction.

Good Luck Boys :)

 May 3, 2017
 #1
avatar+633 
+1

1+52

It's the Fibonacci sequence! The geometric difference between the numbers is asymptotic to the above: 1/1, 2/1, 3/2, 5/3, 8/5, etc. To get the next number in the series, simply take the sum of the previous 2.

 May 3, 2017
 #2
avatar+118710 
0

 

Interesting :)

 

Let

y=x+1x+1x+1x+....soy=x+1yx=yy1dxdy=1+y2dx=(1+y2)dywhenx=0y=1yy2=1y=±1this is a stumbling block, I only want one valuewhenx=11=yy1y=y21y2y1=0y=1±52two answers again :(


10x+1x+1x+1x+....dx=??y(1+y2)dy=??y+y1dy=[y22+lny]??

 

 

Now I have to think about those questions marks  

 

To be continued   :)

 

 

I can see Heureka's answer underneath ..... I'll have to think about it more but I will leave this here for now.

Maybe Heuarka, you might like to commnent on what I have done ??

 May 3, 2017
 #3
avatar+118710 
+1

You cannot find the log of a negative number so I am goinf for the positive values.( this is not great mathematical reasoning here:

 

I'd believe Heureka if I were you   LOL

 

10x+1x+1x+1x+....dx=1+521y(1+y2)dy=1+521y+y1dy=[y22+lny]1+521=[(1+52)2÷2+ln(1+52)12]=[(1+5)28+ln(1+52)48]=[6+2548+ln(1+52)]=[2+258+ln(1+52)]=1+54+ln(1+52)

Melody  May 3, 2017
 #4
avatar+118710 
0

Oh dear, these two regions are not the same area.  What a pity.

 

I guess I better keep thinking!

 

 May 3, 2017
 #5
avatar+312 
+2

Ok. I think i got this-

 

Lets call the expression f(x). we know that x+1/f(x)=f(x). We can multiply by f(x) and get-


x*f(x)+1=f(x)    |  subtract x*f(x)

 

f(x)2-x*f(x)=1    | add x2/4 

 

(f(x)-x/2)2=1+x2/4

 

f(x)=x/2+(1+x2/4)1/2.

 

 

Im terrible at finding integrals, so i used an integral calculator:

 

 

its integral is:

 

1/4 (x (sqrt(x^2 + 4) + x) + 4 sinh^(-1)(x/2)) + constant

 May 3, 2017
edited by Ehrlich  May 3, 2017
 #6
avatar+26398 
+1

One more :)

Continuous Fraction.

sum=x+1x+1x+1x+sum=x+1sumsum1sum=xsum21sum=xsum21=xsumsum2xsum1=0sum=x±x24(1)2sum=x±x2+42

 

1x=0x+1x+1x+1x+ dx=1x=0sum dx=1x=0x±x2+42 dx=121x=0x dx±1x=0x2+42 dx=12[x22]1x=0±1x=02(x2)2+12 dx=14±1x=0(x2)2+1 dxsubstitute: x2=sinh(z)z=arsinh(x2)dx=2cosh(z) dz new limits: x=0:z=arsinh(02)z=0x=1:z=arsinh(12) =14±arsinh(12)x=0sinh2(z)+12cosh(z) dz cosh2(z)=1+sinh2(z) =14±arsinh(12)x=0cosh2(z)2cosh(z) dz=14±arsinh(12)x=0cosh(z)2cosh(z) dz=14±2arsinh(12)x=0cosh2(z) dz cosh2(z)=12+12cosh(2z) =14±2arsinh(12)x=012+12cosh(2z) dz=14±arsinh(12)x=01+cosh(2z) dz=14±(arsinh(12)x=0 dz+arsinh(12)x=0cosh(2z) dz)=14±([z]arsinh(12)x=0+[sinh(2z)2]arsinh(12)x=0) sinh(2z)=2sinh(z)cosh(z) =14±([z]arsinh(12)x=0+[2sinh(z)cosh(z)2]arsinh(12)x=0)=14±([z]arsinh(12)x=0+[sinh(z)cosh(z)]arsinh(12)x=0)=14±(arsinh(12)+12cosh(arsinh(12)))=14±(0.4812118250596+12cosh(0.4812118250596))=14±(1.0402288194345508)

 

=14+1.0402288194345508or=141.0402288194345508=1.2902288194345508or=0.7902288194345508

 

laugh

 May 3, 2017
edited by heureka  May 3, 2017
 #7
avatar+118710 
0

Thanks Heureka :)

Melody  May 3, 2017
 #8
avatar+312 
+2

You truly are the LaTeX master

 

Although i believe the expression cant be

(x-(x2+4)1/2)/2 because that means its negative, and im quite sure it cant be negative. I cant prove it properly right now, but i believe there is only one answer to the question.

Ehrlich  May 3, 2017

1 Online Users