Solve for x over the real numbers:
850 e^(0.055 x) = 195 e^(0.075 x)
850 e^(0.055 x) = 850 e^(11 x/200) and 195 e^(0.075 x) = 195 e^(3 x/40):
850 e^((11 x)/200) = 195 e^((3 x)/40)
Take the natural logarithm of both sides and use the identities log(a b) = log(a) + log(b) and log(a^b) = b log(a):
(11 x)/200 + log(850) = (3 x)/40 + log(195)
Subtract (3 x)/40 + log(850) from both sides:
-x/50 = log(195) - log(850)
Multiply both sides by -50:
Answer: | x = 50 log(850) - 50 log(195)= 73.61183954603077.......
850e^(0.055x)=195e^(0.075x)
850⋅e0.055x=195⋅e0.075x|:195850195⋅e0.055x=e0.075x|⋅e−0.055x850195=e0.075x⋅e−0.055x850195=e0.075x−0.055x850195=e0.02x17039=e0.02x|ln of both sides ln(17039)=ln(e0.02x)ln(17039)=0.02x⋅ln(e)|ln(e)=1ln(17039)=0.02x|:0.02ln(17039)0.02=xln(4.35897435897)0.02=x1.472236790920.02=x73.6118395460=x