Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
814
2
avatar

850e^(0.055x)=195e^(0.075x)

 Mar 20, 2017
 #1
avatar
0

Solve for x over the real numbers:
850 e^(0.055 x) = 195 e^(0.075 x)

850 e^(0.055 x) = 850 e^(11 x/200) and 195 e^(0.075 x) = 195 e^(3 x/40):
850 e^((11 x)/200) = 195 e^((3 x)/40)

Take the natural logarithm of both sides and use the identities log(a b) = log(a) + log(b) and log(a^b) = b log(a):
(11 x)/200 + log(850) = (3 x)/40 + log(195)

Subtract (3 x)/40 + log(850) from both sides:
-x/50 = log(195) - log(850)

Multiply both sides by -50:
Answer: | x = 50 log(850) - 50 log(195)= 73.61183954603077.......

 Mar 20, 2017
 #2
avatar+26396 
0

850e^(0.055x)=195e^(0.075x)

 

850e0.055x=195e0.075x|:195850195e0.055x=e0.075x|e0.055x850195=e0.075xe0.055x850195=e0.075x0.055x850195=e0.02x17039=e0.02x|ln of both sides ln(17039)=ln(e0.02x)ln(17039)=0.02xln(e)|ln(e)=1ln(17039)=0.02x|:0.02ln(17039)0.02=xln(4.35897435897)0.02=x1.472236790920.02=x73.6118395460=x

 

laugh

 Mar 20, 2017

4 Online Users

avatar
avatar