Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
879
4
avatar

ʃ (2x + 6)(x2 + 6x + 3)7 dx

 Mar 16, 2017
 #1
avatar+26396 
0

ʃ (2x + 6)(x2 + 6x + 3)7 dx

 

(2x+6)(x2+6x+3)7 dx=7(2x+6)(x2+6x+3) dx=7(2x3+12x2+6x+6x2+36x+18) dx=7(2x3+18x2+42x+18) dx=7(24x4+183x3+422x2+18x)=3.5x4+42x3+147x2+126+c

 

laugh

 Mar 16, 2017
 #3
avatar+33654 
0

heureka's 126 should be 126x of course!

Alan  Mar 16, 2017
 #4
avatar+26396 
0

ʃ (2x + 6)(x2 + 6x + 3)7 dx

 

Sorry, without mistakes:

 

(2x+6)(x2+6x+3)7 dx

 

=7(2x+6)(x2+6x+3) dx=7(2x3+12x2+6x+6x2+36x+18) dx=7(2x3+18x2+42x+18) dx=7(24x4+183x3+422x2+18x)=3.5x4+42x3+147x2+126x+c

 

 

blushlaugh

heureka  Mar 16, 2017
 #2
avatar
0

Take the integral:
 integral7 (2 x + 6) (x^2 + 6 x + 3) dx
Factor out constants:
 = 7 integral(2 x + 6) (x^2 + 6 x + 3) dx
Expanding the integrand (2 x + 6) (x^2 + 6 x + 3) gives 2 x^3 + 18 x^2 + 42 x + 18:
 = 7 integral(2 x^3 + 18 x^2 + 42 x + 18) dx
Integrate the sum term by term and factor out constants:
 = 14 integral x^3 dx + 126 integral x^2 dx + 294 integral x dx + 126 integral1 dx
The integral of x^3 is x^4/4:
 = (7 x^4)/2 + 126 integral x^2 dx + 294 integral x dx + 126 integral1 dx
The integral of x^2 is x^3/3:
 = 42 x^3 + (7 x^4)/2 + 294 integral x dx + 126 integral1 dx
The integral of x is x^2/2:
 = 147 x^2 + 42 x^3 + (7 x^4)/2 + 126 integral1 dx
The integral of 1 is x:
 = (7 x^4)/2 + 42 x^3 + 147 x^2 + 126 x + constant
Which is equal to:
Answer: |= 14 (x^4/4 + 3 x^3 + (21 x^2)/2 + 9 x) + constant

 Mar 16, 2017

1 Online Users

avatar