Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
675
5
avatar

x3x21dx

I think I am supposed to use integration by substitution or integration by parts, but I'm not sure. Can anyone help with this? Thanks :)

 Feb 3, 2017

Best Answer 

 #4
avatar+26396 
+15

I think I am supposed to use integration by substitution or integration by parts, but I'm not sure. Can anyone help with this?

x3x21dx

 

We apply twice substitution

 

We need the following formulae:

cosh2(z)sinh2(z)=1sinh2(z)=cosh2(z)1sinh(z)=cosh2(z)1cosh2(z)sinh2(z)=1cosh2(z)=1+sinh2(z)ddzsinh(z)=cosh(z)ddzcosh(z)=sinh(z)

 

1. Substitution

x=cosh(z)dx=sinh(z) dzx3x21 dx=cosh3(z)cosh2(z)1sinh(z) dz=cosh3(z)sinh(z)sinh(z) dz=cosh3(z)sinh2(z) dz

 

 

2. Substitution

u=sinh(z)du=cosh(z) dzcosh3(z)sinh2(z) dz=cosh2(z)sinh2(z)cosh(z) dz=[1+sinh2(z)]sinh2(z)cosh(z) dz=(1+u2)u2 du=(u2+u4) du=u33+u55+c=u33+u55+c=u3355+u5533+c=u315(5+3u2)+c

 

3. Back substitution

u=sinh(z)=cosh2(z)1=x21x3x21 dx=u315(5+3u2)+c=(x21)315[5+3(x21)2]+c=(x21)3215[5+3(x21)]+c=(x21)3215(5+3x23)+c=(x21)3215(3x2+2)+c

 

 

laugh

 Feb 3, 2017
 #1
avatar+9488 
+1

Sorry this got posted 3 times, something was lagging and I couldn't see it so I thought it wasn't posting. blush

 Feb 3, 2017
 #2
avatar+9488 
+1

I've gotten this far on it but after that I'm stuck:

Set u = x2 and du = 2x dx

(1/2)uu1du

 Feb 3, 2017
 #3
avatar+130466 
+1

x = sec θ     dx  =  sec θ*tan θ dθ

 

∫  sec^3( θ )  √[ sec^2θ  - 1 ] secθ*tanθ dθ  =

 

∫ sec^3( θ ) √ [ tan^2θ ]  secθ*tanθ dθ  =

 

∫ sec^3( θ ) √ [ tanθ ]  secθ*tanθ dθ  =

 

∫ sec^4 θ *  tan^2θ   dθ

 

∫ [sec^2 θ] * [sec^2 θ] * tan^2θ   dθ  =

 

∫ tan^2θ * [ tan^2θ + 1] [sec^2 θ]   dθ  =

 

∫ [  tan^4θ  +  tan^2θ ]  [sec^2 θ]   dθ  =

 

∫ [ tanθ ]^4 *  [sec^2 θ]   dθ    +  ∫   [ tanθ ]^2 *  [sec^2 θ]  dθ  =

 

(1/5) [ tanθ ]^5    +  (1/3)  [tanθ ]^3   + C

 

Now  x  = sec θ     ...so....   x^2  = sec^2θ  =  1 +  [ tanθ]^2  → 

 

x^2  - 1  =   [tanθ]^2     ...so......

 

[x^2  - 1]^(5/2)  = [ [tanθ]^2 ] ^(5/2)  = [ tanθ ]^5

 

And

 

[x^2  - 1]^(3/2)  = [ [tanθ]^2 ] ^(3/2)  = [ tanθ ]^3

 

So we have

 

∫  x^3 √[ x^2  - 1 ]  dx  =

 

(1/5)[x^2  - 1]^(5/2)  + (1/3)[x^2  - 1]^(3/2)   + C

 

Proof :

 

http://www.wolframalpha.com/input/?i=derivative++(1%2F5)%5Bx%5E2++-+1%5D%5E(5%2F2)++%2B+(1%2F3)%5Bx%5E2++-+1%5D%5E(3%2F2)+++%2B+C

 

 

cool cool cool

 Feb 3, 2017
 #4
avatar+26396 
+15
Best Answer

I think I am supposed to use integration by substitution or integration by parts, but I'm not sure. Can anyone help with this?

x3x21dx

 

We apply twice substitution

 

We need the following formulae:

cosh2(z)sinh2(z)=1sinh2(z)=cosh2(z)1sinh(z)=cosh2(z)1cosh2(z)sinh2(z)=1cosh2(z)=1+sinh2(z)ddzsinh(z)=cosh(z)ddzcosh(z)=sinh(z)

 

1. Substitution

x=cosh(z)dx=sinh(z) dzx3x21 dx=cosh3(z)cosh2(z)1sinh(z) dz=cosh3(z)sinh(z)sinh(z) dz=cosh3(z)sinh2(z) dz

 

 

2. Substitution

u=sinh(z)du=cosh(z) dzcosh3(z)sinh2(z) dz=cosh2(z)sinh2(z)cosh(z) dz=[1+sinh2(z)]sinh2(z)cosh(z) dz=(1+u2)u2 du=(u2+u4) du=u33+u55+c=u33+u55+c=u3355+u5533+c=u315(5+3u2)+c

 

3. Back substitution

u=sinh(z)=cosh2(z)1=x21x3x21 dx=u315(5+3u2)+c=(x21)315[5+3(x21)2]+c=(x21)3215[5+3(x21)]+c=(x21)3215(5+3x23)+c=(x21)3215(3x2+2)+c

 

 

laugh

heureka Feb 3, 2017
 #5
avatar+26396 
+10

I think I am supposed to use integration by substitution or integration by parts, but I'm not sure.

Can anyone help with this?

x3x21 dx

 

short way:

 

Substitution

u=x21=(x21)12orx=u2+1du=12(x21)122x dx=xx21 dxordx=x21x dux3x21 dx=(u2+1)3ux21x du=(u2+1)3uuu2+1 du=(u2+1)2u2 du=(u2+1)u2 du=(u4+u2) du=u33+u55+c=u3355+u5533+c=u315(5+3u2)+c

 

Back substitution

u=x21x3x21 dx=u315(5+3u2)+c=(x21)315[5+3(x21)2]+c=(x21)3215[5+3(x21)]+c=(x21)3215(5+3x23)+c=(x21)3215(3x2+2)+c

 

 

laugh

heureka  Feb 3, 2017

2 Online Users