∫x3√x2−1dx
I think I am supposed to use integration by substitution or integration by parts, but I'm not sure. Can anyone help with this? Thanks :)
I think I am supposed to use integration by substitution or integration by parts, but I'm not sure. Can anyone help with this?
∫x3√x2−1dx
We apply twice substitution
We need the following formulae:
cosh2(z)−sinh2(z)=1sinh2(z)=cosh2(z)−1sinh(z)=√cosh2(z)−1cosh2(z)−sinh2(z)=1cosh2(z)=1+sinh2(z)ddzsinh(z)=cosh(z)ddzcosh(z)=sinh(z)
1. Substitution
x=cosh(z)dx=sinh(z) dz∫x3⋅√x2−1 dx=∫cosh3(z)⋅√cosh2(z)−1⋅sinh(z) dz=∫cosh3(z)⋅sinh(z)⋅sinh(z) dz=∫cosh3(z)⋅sinh2(z) dz
2. Substitution
u=sinh(z)du=cosh(z) dz∫cosh3(z)⋅sinh2(z) dz=∫cosh2(z)⋅sinh2(z)⋅cosh(z) dz=∫[1+sinh2(z)]⋅sinh2(z)⋅cosh(z) dz=∫(1+u2)⋅u2 du=∫(u2+u4) du=u33+u55+c=u33+u55+c=u33⋅55+u55⋅33+c=u315⋅(5+3u2)+c
3. Back substitution
u=sinh(z)=√cosh2(z)−1=√x2−1∫x3⋅√x2−1 dx=u315⋅(5+3u2)+c=(√x2−1)315⋅[5+3(√x2−1)2]+c=(x2−1)3215⋅[5+3(x2−1)]+c=(x2−1)3215⋅(5+3x2−3)+c=(x2−1)3215⋅(3x2+2)+c
Sorry this got posted 3 times, something was lagging and I couldn't see it so I thought it wasn't posting.
I've gotten this far on it but after that I'm stuck:
Set u = x2 and du = 2x dx
(1/2)∫u√u−1du
x = sec θ dx = sec θ*tan θ dθ
∫ sec^3( θ ) √[ sec^2θ - 1 ] secθ*tanθ dθ =
∫ sec^3( θ ) √ [ tan^2θ ] secθ*tanθ dθ =
∫ sec^3( θ ) √ [ tanθ ] secθ*tanθ dθ =
∫ sec^4 θ * tan^2θ dθ
∫ [sec^2 θ] * [sec^2 θ] * tan^2θ dθ =
∫ tan^2θ * [ tan^2θ + 1] [sec^2 θ] dθ =
∫ [ tan^4θ + tan^2θ ] [sec^2 θ] dθ =
∫ [ tanθ ]^4 * [sec^2 θ] dθ + ∫ [ tanθ ]^2 * [sec^2 θ] dθ =
(1/5) [ tanθ ]^5 + (1/3) [tanθ ]^3 + C
Now x = sec θ ...so.... x^2 = sec^2θ = 1 + [ tanθ]^2 →
x^2 - 1 = [tanθ]^2 ...so......
[x^2 - 1]^(5/2) = [ [tanθ]^2 ] ^(5/2) = [ tanθ ]^5
And
[x^2 - 1]^(3/2) = [ [tanθ]^2 ] ^(3/2) = [ tanθ ]^3
So we have
∫ x^3 √[ x^2 - 1 ] dx =
(1/5)[x^2 - 1]^(5/2) + (1/3)[x^2 - 1]^(3/2) + C
Proof :
http://www.wolframalpha.com/input/?i=derivative++(1%2F5)%5Bx%5E2++-+1%5D%5E(5%2F2)++%2B+(1%2F3)%5Bx%5E2++-+1%5D%5E(3%2F2)+++%2B+C
I think I am supposed to use integration by substitution or integration by parts, but I'm not sure. Can anyone help with this?
∫x3√x2−1dx
We apply twice substitution
We need the following formulae:
cosh2(z)−sinh2(z)=1sinh2(z)=cosh2(z)−1sinh(z)=√cosh2(z)−1cosh2(z)−sinh2(z)=1cosh2(z)=1+sinh2(z)ddzsinh(z)=cosh(z)ddzcosh(z)=sinh(z)
1. Substitution
x=cosh(z)dx=sinh(z) dz∫x3⋅√x2−1 dx=∫cosh3(z)⋅√cosh2(z)−1⋅sinh(z) dz=∫cosh3(z)⋅sinh(z)⋅sinh(z) dz=∫cosh3(z)⋅sinh2(z) dz
2. Substitution
u=sinh(z)du=cosh(z) dz∫cosh3(z)⋅sinh2(z) dz=∫cosh2(z)⋅sinh2(z)⋅cosh(z) dz=∫[1+sinh2(z)]⋅sinh2(z)⋅cosh(z) dz=∫(1+u2)⋅u2 du=∫(u2+u4) du=u33+u55+c=u33+u55+c=u33⋅55+u55⋅33+c=u315⋅(5+3u2)+c
3. Back substitution
u=sinh(z)=√cosh2(z)−1=√x2−1∫x3⋅√x2−1 dx=u315⋅(5+3u2)+c=(√x2−1)315⋅[5+3(√x2−1)2]+c=(x2−1)3215⋅[5+3(x2−1)]+c=(x2−1)3215⋅(5+3x2−3)+c=(x2−1)3215⋅(3x2+2)+c
I think I am supposed to use integration by substitution or integration by parts, but I'm not sure.
Can anyone help with this?
∫x3⋅√x2−1 dx
short way:
Substitution
u=√x2−1=(x2−1)12orx=√u2+1du=12⋅(x2−1)−12⋅2x dx=x√x2−1 dxordx=√x2−1x du∫x3⋅√x2−1 dx=∫(√u2+1)3⋅u√x2−1x du=∫(√u2+1)3⋅uu√u2+1 du=∫(√u2+1)2⋅u2 du=∫(u2+1)⋅u2 du=∫(u4+u2) du=u33+u55+c=u33⋅55+u55⋅33+c=u315⋅(5+3u2)+c
Back substitution
u=√x2−1∫x3⋅√x2−1 dx=u315⋅(5+3u2)+c=(√x2−1)315⋅[5+3(√x2−1)2]+c=(x2−1)3215⋅[5+3(x2−1)]+c=(x2−1)3215⋅(5+3x2−3)+c=(x2−1)3215⋅(3x2+2)+c