2^x * 5^y, = 100 2^y 5^x = 1000 x+y=?
2^x * 5^y = 100
2^y * 5^x = 1000
x+y = ?
2x⋅5y=1002x⋅5y=1022y⋅5x=10002y⋅5x=103(2x⋅5y)⋅(2y⋅5x)=102⋅1032x⋅2y⋅5y⋅5x=102+32x⋅2y⋅5y⋅5x=1052x+y⋅5y+x=105(2⋅5)x+y=10510x+y=105x+y=5
Using Newton-Raphson method:
x= (2 log(2) - 3 log(5))/(log(2) - log(5)) ≈ 3.75647
y= (3 log(2) - 2 log(5))/(log(2) - log(5)) ≈1.24353
x + y = 3.75647 + 1.24353 =5
Another approach ---- take log each side.
2x⋅5y=100→xlog2+ylog5=2
2y⋅5x=1000→ylog2+xlog5=3
After this we may solve it like a linear equation!!
Add the 2 equations up:xlog2+ylog2+xlog5+ylog5=5(x+y)(log2+log5)=5←Factorization(x+y)(log10)=5←Property of logarithmsx+y=5