heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26387 
+10
17.10.2016
 #1
avatar+26387 
+9

Can someone help me use the definition of a derivative using the f(x) listed below.

\(f(x)=\frac{1}{\sqrt{x^2+5}}\)

 

\(\begin{array}{|rcll|} \hline f'(x) &=& \lim \limits_{h\to 0} \frac{ f(x+h) - f(x) } {h} \\\\ f'(x) &=& \lim \limits_{h\to 0} \frac{ \left( \frac{1}{ \sqrt{(x+h)^2+5} } - \frac{1}{ \sqrt{x^2+5}} \right) \cdot \left( \frac{1}{ \sqrt{(x+h)^2+5} } + \frac{1}{ \sqrt{x^2+5}} \right) } {h \cdot \left( \frac{1}{ \sqrt{(x+h)^2+5} } + \frac{1}{ \sqrt{x^2+5}} \right) } \quad | \quad (a-b)(a+b) = a^2-b^2\\ f'(x) &=& \lim \limits_{h\to 0} \frac{ \left( \frac{1}{ (x+h)^2+5 } - \frac{1}{ x^2+5 } \right) } {h \cdot \left( \frac{1}{ \sqrt{(x+h)^2+5} } + \frac{1}{ \sqrt{x^2+5}} \right) } \\ f'(x) &=& \lim \limits_{h\to 0} \frac{ \frac{(x^2+5)-[(x+h)^2+5] }{ [(x+h)^2+5]\cdot(x^2+5) } } {h \cdot \left( \frac{1}{ \sqrt{(x+h)^2+5} } + \frac{1}{ \sqrt{x^2+5}} \right) } \\ f'(x) &=& \lim \limits_{h\to 0} \frac{ \frac{(x^2+5)-(x^2+2xh+h^2+5) }{ [(x+h)^2+5]\cdot(x^2+5) } } {h \cdot \left( \frac{1}{ \sqrt{(x+h)^2+5} } + \frac{1}{ \sqrt{x^2+5}} \right) } \\ f'(x) &=& \lim \limits_{h\to 0} \frac{ \frac{(x^2+5)-x^2-2xh-h^2-5) }{ [(x+h)^2+5]\cdot(x^2+5) } } {h \cdot \left( \frac{1}{ \sqrt{(x+h)^2+5} } + \frac{1}{ \sqrt{x^2+5}} \right) } \\ f'(x) &=& \lim \limits_{h\to 0} \frac{ \frac{x^2+5-x^2-2xh-h^2-5 }{ [(x+h)^2+5]\cdot(x^2+5) } } {h \cdot \left( \frac{1}{ \sqrt{(x+h)^2+5} } + \frac{1}{ \sqrt{x^2+5}} \right) } \\ f'(x) &=& \lim \limits_{h\to 0} \frac{ \frac{ -2xh-h^2 }{ [(x+h)^2+5]\cdot(x^2+5) } } {h \cdot \left( \frac{1}{ \sqrt{(x+h)^2+5} } + \frac{1}{ \sqrt{x^2+5}} \right) } \\ f'(x) &=& \lim \limits_{h\to 0} \frac{ -2xh-h^2 } {h \cdot \left( \frac{1}{ \sqrt{(x+h)^2+5} } + \frac{1}{ \sqrt{x^2+5}} \right) \cdot [(x+h)^2+5]\cdot(x^2+5) } \\ f'(x) &=& \lim \limits_{h\to 0} \frac{ h\cdot(-2x-h) } {h \cdot \left( \frac{1}{ \sqrt{(x+h)^2+5} } + \frac{1}{ \sqrt{x^2+5}} \right) \cdot [(x+h)^2+5]\cdot(x^2+5) } \\ f'(x) &=& \lim \limits_{h\to 0} \frac{ -2x-h } { \left( \frac{1}{ \sqrt{(x+h)^2+5} } + \frac{1}{ \sqrt{x^2+5}} \right) \cdot [(x+h)^2+5]\cdot(x^2+5) } \\ f'(x) &=& \frac{ -2x-0 } { \left( \frac{1}{ \sqrt{(x+0)^2+5} } + \frac{1}{ \sqrt{x^2+5}} \right) \cdot [(x+0)^2+5]\cdot(x^2+5) } \\ f'(x) &=& \frac{ -2x } { \left( \frac{1}{ \sqrt{x^2+5} } + \frac{1}{ \sqrt{x^2+5}} \right) \cdot (x^2+5)\cdot(x^2+5) } \\ f'(x) &=& \frac{ -2x } { 2\cdot \frac{1}{ \sqrt{x^2+5} } \cdot (x^2+5)^2 } \\ f'(x) &=& \frac{ - x } { \frac{1}{ \sqrt{x^2+5} } \cdot (x^2+5)^2 } \\ f'(x) &=& \frac{ -x } { \frac{(x^2+5)^2}{ \sqrt{x^2+5} } } \\ f'(x) &=& \frac{ -x } { \frac{ \sqrt{(x^2+5)^4}} { \sqrt{x^2+5} } } \\ f'(x) &=& \frac{ -x } { \sqrt{ \frac{ (x^2+5)^4 } { x^2+5} } } \\ f'(x) &=& \frac{ -x } { \sqrt{ (x^2+5)^3 } } \\ \hline \end{array} \)

 

laugh

17.10.2016
 #2
avatar+26387 
0
14.10.2016
 #1
avatar+26387 
0

Write a rule for a quadratic function with a graph that has x-intercepts (2,0) and (-6,0) and a maximum point of (-2,4)

 

quadratic function: \(y =ax^2+bx+c\)

 

1. Point (x=2, y=0):

\( \quad 0 = a\cdot (2^2)+b\cdot 2 + c \\ \Rightarrow 4a+2b+c=0\)

 

Maximum Point (\(x_{max} = -2, \ y_{max} = 4\)):

\(\begin{array}{|rcll|} \hline x_{max} &=& -\frac{b}{2a} \\ -2 &=& -\frac{b}{2a} \\ 2 &=& \frac{b}{2a} \\ 4a &=& b \\ \mathbf{ a } & \mathbf{=}& \mathbf{\frac{b}{4} }\\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline 4a+2b+c&=&0 \quad | \quad a=\frac{b}{4} \\ 4\cdot \frac{b}{4} +2b+c&=&0 \\ b+2b+c&=&0 \\ 3b+c&=&0 \\ 3b&=&-c \\ \mathbf{ b } & \mathbf{=}& \mathbf{-\frac{c}{3}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline a &=& \frac{b}{4} \quad | \quad b = -\frac{c}{3} \\ a &=& \frac{ -\frac{c}{3}}{4} \\ a &=& -\frac{c}{12} \\\\ y_{max} &=& a\cdot ( x_{max} ) ^2 + b\cdot x_{max} + c \quad | \quad a = -\frac{c}{12} \quad b = -\frac{c}{3} \\ y_{max} &=& -\frac{c}{12}\cdot ( x_{max} ) ^2 -\frac{c}{3}\cdot x_{max} + c \quad | \quad x_{max} = -2\\ y_{max} &=& -\frac{c}{12}\cdot ( -2 ) ^2 -\frac{c}{3}\cdot (-2) + c \quad | \quad y_{max} = 4\\ 4 &=& -\frac{1}{3}\cdot c +\frac{2}{3}\cdot c + c \\ 4 &=& \frac{4}{3}\cdot c \\ \mathbf{ c } & \mathbf{=}& \mathbf{3} \\\\ b&=&-\frac{c}{3}\\ \mathbf{ b } & \mathbf{=}& \mathbf{-1} \\\\ a&=&-\frac{b}{4}\\ \mathbf{ a } & \mathbf{=}& \mathbf{-\frac{1}{4}} \\ \hline \end{array}\)

 

quadratic function:

\(\begin{array}{|rcll|} \hline y &=& ax^2+bx+c \\ \mathbf{ y }&\mathbf{=}& \mathbf{-\frac{1}{4}x^2-x+3} \\ \hline \end{array}\)

 

 

laugh

13.10.2016