five consecutive terms of an arithmetic sequence have a sum of 40. The product of the first, middle and the last term is 224. Find the terms of sequence PLEASE HELP !
I.
ai+ai+1+ai+2+ai+3+ai+4=40ai+(ai+d)+(ai+2d)+(ai+3d)+(ai+4d)=405ai+10d=40|:5ai+2d=8ai=8−2d
II.
ai⋅ai+2⋅ai+4=224ai⋅(ai+2d)⋅(ai+4d)=224|ai=8−2d(8−2d)⋅(8−2d+2d)⋅(8−2d+4d)=224(8−2d)⋅8⋅(8+2d)=224|:8(8−2d)⋅(8+2d)=2248(8−2d)⋅(8+2d)=28|(u−v)⋅(u+v)=u2−v282−(2d)2=2864−4d2=284d2=64−284d2=36|:4d2=9d=√9d=3
III.
ai=8−2d|d=3ai=8−2⋅3ai=8−6ai=2
five consecutive terms of an arithmetic sequence: …,2,5,8,11,14,…
sum: 2+5+8+11+14=40product: 2⋅8⋅14=224
