Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26396 
+10
17.10.2016
 #1
avatar+26396 
+9

Can someone help me use the definition of a derivative using the f(x) listed below.

f(x)=1x2+5

 

f(x)=limh0f(x+h)f(x)hf(x)=limh0(1(x+h)2+51x2+5)(1(x+h)2+5+1x2+5)h(1(x+h)2+5+1x2+5)|(ab)(a+b)=a2b2f(x)=limh0(1(x+h)2+51x2+5)h(1(x+h)2+5+1x2+5)f(x)=limh0(x2+5)[(x+h)2+5][(x+h)2+5](x2+5)h(1(x+h)2+5+1x2+5)f(x)=limh0(x2+5)(x2+2xh+h2+5)[(x+h)2+5](x2+5)h(1(x+h)2+5+1x2+5)f(x)=limh0(x2+5)x22xhh25)[(x+h)2+5](x2+5)h(1(x+h)2+5+1x2+5)f(x)=limh0x2+5x22xhh25[(x+h)2+5](x2+5)h(1(x+h)2+5+1x2+5)f(x)=limh02xhh2[(x+h)2+5](x2+5)h(1(x+h)2+5+1x2+5)f(x)=limh02xhh2h(1(x+h)2+5+1x2+5)[(x+h)2+5](x2+5)f(x)=limh0h(2xh)h(1(x+h)2+5+1x2+5)[(x+h)2+5](x2+5)f(x)=limh02xh(1(x+h)2+5+1x2+5)[(x+h)2+5](x2+5)f(x)=2x0(1(x+0)2+5+1x2+5)[(x+0)2+5](x2+5)f(x)=2x(1x2+5+1x2+5)(x2+5)(x2+5)f(x)=2x21x2+5(x2+5)2f(x)=x1x2+5(x2+5)2f(x)=x(x2+5)2x2+5f(x)=x(x2+5)4x2+5f(x)=x(x2+5)4x2+5f(x)=x(x2+5)3

 

laugh

17.10.2016
 #1
avatar+26396 
0

five consecutive terms of an arithmetic sequence have a sum of 40. The product of the first, middle and the last term is 224. Find the terms of sequence PLEASE HELP !

 

I.

ai+ai+1+ai+2+ai+3+ai+4=40ai+(ai+d)+(ai+2d)+(ai+3d)+(ai+4d)=405ai+10d=40|:5ai+2d=8ai=82d

 

II.

aiai+2ai+4=224ai(ai+2d)(ai+4d)=224|ai=82d(82d)(82d+2d)(82d+4d)=224(82d)8(8+2d)=224|:8(82d)(8+2d)=2248(82d)(8+2d)=28|(uv)(u+v)=u2v282(2d)2=28644d2=284d2=64284d2=36|:4d2=9d=9d=3

 

III.

ai=82d|d=3ai=823ai=86ai=2

 

five consecutive terms of an arithmetic sequence: ,2,5,8,11,14,

sum: 2+5+8+11+14=40product: 2814=224

 

laugh

14.10.2016
 #2
avatar+26396 
0
14.10.2016
 #4
avatar+26396 
0

can someone please help me find the derivative of this:
f(x)=3x+2x2016+1x3

 

f(x)=3x+2x2016+1x33x=x132x2016=2x20161x3=1x32=x32f(x)=x13+2x2016+x32Formula: y=xny=nxn1f(x)=13x131+2(2016)x20161+(32)x321f(x)=13x234032x201732x52x23=1x23=13x2x2017=1x2017x52=1x52=1x5f(x)=1313x240321x2017321x5f(x)=133x24032x201732x5

 

Your answer is the same and also correct.

 

laugh

14.10.2016
 #1
avatar+26396 
0

Write a rule for a quadratic function with a graph that has x-intercepts (2,0) and (-6,0) and a maximum point of (-2,4)

 

quadratic function: y=ax2+bx+c

 

1. Point (x=2, y=0):

0=a(22)+b2+c4a+2b+c=0

 

Maximum Point (xmax=2, ymax=4):

xmax=b2a2=b2a2=b2a4a=ba=b4

 

4a+2b+c=0|a=b44b4+2b+c=0b+2b+c=03b+c=03b=cb=c3

 

a=b4|b=c3a=c34a=c12ymax=a(xmax)2+bxmax+c|a=c12b=c3ymax=c12(xmax)2c3xmax+c|xmax=2ymax=c12(2)2c3(2)+c|ymax=44=13c+23c+c4=43cc=3b=c3b=1a=b4a=14

 

quadratic function:

y=ax2+bx+cy=14x2x+3

 

 

laugh

13.10.2016