Processing math: 100%
 
+0  
 
0
824
4
avatar+65 

can someone please help me find the derivative of this: 

 

 

f(x)=3x+2x2016+1x3

 

 

 

My answer is:  f(x)=13x234032x2015x403232xx3

 Oct 13, 2016
 #1
avatar+130466 
0

Expressing this in exponential form, we have :

 

f (x) = x1/3 + 2x-2016 + x-1/3        use the power rule here

 

f ' (x)   = (1/3)x-2/3 - 4032x-2017 - (1/3)x-4/3

 

 

cool cool cool

 Oct 13, 2016
 #3
avatar+65 
0

wouldnt your f(x) be? f(x)=x13+2x2016+x3/2

Joshie17  Oct 13, 2016
 #2
avatar
0

Find the derivative of the following via implicit differentiation:
d/dx(f(x)) = d/dx(2/x^2016+1/x^(1/3)+x^(1/3))
The derivative of f(x) is f'(x):
f'(x) = d/dx(2/x^2016+1/x^(1/3)+x^(1/3))
Differentiate the sum term by term and factor out constants:
f'(x) = 2 d/dx(1/x^2016)+d/dx(1/x^(1/3))+d/dx(x^(1/3))
Use the power rule, d/dx(x^n) = n x^(n-1), where n = -2016: d/dx(1/x^2016) = d/dx(x^(-2016)) = -2016 x^(-2017):
f'(x) = d/dx(1/x^(1/3))+d/dx(x^(1/3))+2 (-2016)/(x^2017)
Simplify the expression:
f'(x) = -4032/x^2017+d/dx(1/x^(1/3))+d/dx(x^(1/3))
Use the power rule, d/dx(x^n) = n x^(n-1), where n = -1/3: d/dx(1/x^(1/3)) = d/dx(x^(-1/3)) = -1/3 x^(-4/3):
f'(x) = -4032/x^2017+d/dx(x^(1/3))+(-1)/(3 x^(4/3))
Use the power rule, d/dx(x^n) = n x^(n-1), where n = 1/3: d/dx(x^(1/3)) = d/dx(x^(1/3)) = x^(-2/3)/3:
f'(x) = -4032/x^2017-1/(3 x^(4/3))+(1)/(3 x^(2/3))
Expand the left hand side:
Answer: |f'(x) = -4032 / x^2017-1 / (3 x^(4/3)) + 1/(3 x^(2/3))

 Oct 13, 2016
 #4
avatar+26396 
0

can someone please help me find the derivative of this:
f(x)=3x+2x2016+1x3

 

f(x)=3x+2x2016+1x33x=x132x2016=2x20161x3=1x32=x32f(x)=x13+2x2016+x32Formula: y=xny=nxn1f(x)=13x131+2(2016)x20161+(32)x321f(x)=13x234032x201732x52x23=1x23=13x2x2017=1x2017x52=1x52=1x5f(x)=1313x240321x2017321x5f(x)=133x24032x201732x5

 

Your answer is the same and also correct.

 

laugh

 Oct 14, 2016

1 Online Users