Write a rule for a quadratic function with a graph that has x-intercepts (2,0) and (-6,0) and a maximum point of (-2,4)
Write a rule for a quadratic function with a graph that has x-intercepts (2,0) and (-6,0) and a maximum point of (-2,4)
quadratic function: y=ax2+bx+c
1. Point (x=2, y=0):
0=a⋅(22)+b⋅2+c⇒4a+2b+c=0
Maximum Point (xmax=−2, ymax=4):
xmax=−b2a−2=−b2a2=b2a4a=ba=b4
4a+2b+c=0|a=b44⋅b4+2b+c=0b+2b+c=03b+c=03b=−cb=−c3
a=b4|b=−c3a=−c34a=−c12ymax=a⋅(xmax)2+b⋅xmax+c|a=−c12b=−c3ymax=−c12⋅(xmax)2−c3⋅xmax+c|xmax=−2ymax=−c12⋅(−2)2−c3⋅(−2)+c|ymax=44=−13⋅c+23⋅c+c4=43⋅cc=3b=−c3b=−1a=−b4a=−14
quadratic function:
y=ax2+bx+cy=−14x2−x+3