Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+5
1011
3
avatar+65 

Can someone help me use the definition of a derivative using the f(x) listed below.

f(x)=1x2+5

 

I got my f(x+h)=1(x+h)2+5

 

then subtracted my f(x+h) by my f(x) all over h and got confused at a few part and got the wrong answer. I know for a fact that my f(x+h) is correct tho.

 Oct 16, 2016

Best Answer 

 #3
avatar+26396 
+10

Thank you Melody.

 

laughlaugh

 Oct 17, 2016
 #1
avatar+26396 
+9

Can someone help me use the definition of a derivative using the f(x) listed below.

f(x)=1x2+5

 

f(x)=limh0f(x+h)f(x)hf(x)=limh0(1(x+h)2+51x2+5)(1(x+h)2+5+1x2+5)h(1(x+h)2+5+1x2+5)|(ab)(a+b)=a2b2f(x)=limh0(1(x+h)2+51x2+5)h(1(x+h)2+5+1x2+5)f(x)=limh0(x2+5)[(x+h)2+5][(x+h)2+5](x2+5)h(1(x+h)2+5+1x2+5)f(x)=limh0(x2+5)(x2+2xh+h2+5)[(x+h)2+5](x2+5)h(1(x+h)2+5+1x2+5)f(x)=limh0(x2+5)x22xhh25)[(x+h)2+5](x2+5)h(1(x+h)2+5+1x2+5)f(x)=limh0x2+5x22xhh25[(x+h)2+5](x2+5)h(1(x+h)2+5+1x2+5)f(x)=limh02xhh2[(x+h)2+5](x2+5)h(1(x+h)2+5+1x2+5)f(x)=limh02xhh2h(1(x+h)2+5+1x2+5)[(x+h)2+5](x2+5)f(x)=limh0h(2xh)h(1(x+h)2+5+1x2+5)[(x+h)2+5](x2+5)f(x)=limh02xh(1(x+h)2+5+1x2+5)[(x+h)2+5](x2+5)f(x)=2x0(1(x+0)2+5+1x2+5)[(x+0)2+5](x2+5)f(x)=2x(1x2+5+1x2+5)(x2+5)(x2+5)f(x)=2x21x2+5(x2+5)2f(x)=x1x2+5(x2+5)2f(x)=x(x2+5)2x2+5f(x)=x(x2+5)4x2+5f(x)=x(x2+5)4x2+5f(x)=x(x2+5)3

 

laugh

 Oct 17, 2016
 #2
avatar+118703 
+10

   cool cool laugh       WOW Heureka   You never fail to impress !       laugh cool cool

 Oct 17, 2016
 #3
avatar+26396 
+10
Best Answer

Thank you Melody.

 

laughlaugh

heureka  Oct 17, 2016

3 Online Users

avatar
avatar