A coast guard cutter detects an unidentified ship at 20.0km in the direction 15.0 degrees east of north. The ship is traveling at 26.0km/h on a course at 40.0 degrees east of north. The Coast Guard wishes to send a speed boat to intercept and inveatigate the vessel. If the speedboat travels at 50.0km/h , in what direction should it head?
We set t = time
$$\small{
\begin{array}{lcl}
\text{Ship position: }
\vec{p}= 20\cdot\binom
{ \sin{(15\ensurement{^{\circ}})} }
{ \cos{(15\ensurement{^{\circ}})} } \\\\
\text{Ship traveling: }
\vec{s}= 26\cdot t \cdot\binom
{ \sin{(40\ensurement{^{\circ}})} }
{ \cos{(40\ensurement{^{\circ}})} } \\\\
\text{Guard cutter traveling: }
\vec{c}= 50\cdot t\cdot\binom
{ \sin{(x)} }
{ \cos{(x)} } \\\\
\vec{p} + \vec{s} & = &\vec{c} \\\\
20\cdot\binom
{ \sin{(15\ensurement{^{\circ}})} }
{ \cos{(15\ensurement{^{\circ}})} }
+
26\cdot t \cdot\binom
{ \sin{(40\ensurement{^{\circ}})} }
{ \cos{(40\ensurement{^{\circ}})} }
&=&
50\cdot t\cdot\binom
{ \sin{(x) } }
{ \cos{(x)} } \\\\
\hline
20\cdot \sin{(15\ensurement{^{\circ}})}
+ 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t
&=&50\cdot t\cdot \sin{(x)} \\
20\cdot \cos{(15\ensurement{^{\circ}})}
+ 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t
&=&50\cdot t\cdot \cos{(x})} \\
\hline
\text{Square both sides }\\
\left[
20\cdot \sin{(15\ensurement{^{\circ}})}
+ 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t \right]^2
&=&50^2\cdot t^2 \sin^2{(x)} \\
\left[
20\cdot \cos{(15\ensurement{^{\circ}})}
+ 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t \right]^2
&=&50^2\cdot t^2 \cos^2{(x})} \\
\hline
\text{Add }\\
\left[
20\cdot \sin{(15\ensurement{^{\circ}})}
+ 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t \right]^2 \\
+ \left[
20\cdot \cos{(15\ensurement{^{\circ}})}
+ 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t \right]^2
&=& 50^2\cdot t^2 [ \sin^2{(x)} + \cos^2{(x})} ] \\
\hline
\sin^2{(x)} + \cos^2{(x})} = 1\\
\left[
20\cdot \sin{(15\ensurement{^{\circ}})}
+ 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t \right]^2 \\
+ \left[
20\cdot \cos{(15\ensurement{^{\circ}})}
+ 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t \right]^2
&=& 50^2\cdot t^2\\
\hline
20^2\cdot \sin^2{(15\ensurement{^{\circ}})}
+ 2\cdot 20\cdot 26 \cdot \sin{(15\ensurement{^{\circ}})}
\cdot \sin{(40\ensurement{^{\circ}})} \cdot t
+ 26^2\cdot t^2 \sin^2{(40\ensurement{^{\circ}})} \\
+20^2\cdot \cos^2{(15\ensurement{^{\circ}})}
+ 2\cdot 20\cdot 26 \cdot \cos{(15\ensurement{^{\circ}})}
\cdot \cos{(40\ensurement{^{\circ}})} \cdot t
+26^2 \cdot t^2 \cos^2{(40\ensurement{^{\circ}})}
&=& 50^2\cdot t^2\\
\hline
\sin^2{ (15\ensurement{^{\circ}}) } + \cos^2{ (15\ensurement{^{\circ}}) } = 1\\
\sin^2{ (40\ensurement{^{\circ}}) } + \cos^2{ (40\ensurement{^{\circ}}) } = 1\\
20^2 + 2\cdot 20\cdot 26 \cdot
[
\underbrace{
\cos{ (15\ensurement{^{\circ}}) } \cdot \cos{ (40\ensurement{^{\circ}}) }
+
\sin{ (15\ensurement{^{\circ}}) } \cdot \sin{ (40\ensurement{^{\circ}}) }
}_{=\cos{(40\ensurement{^{\circ}}-15\ensurement{^{\circ}})}=\cos{25\ensurement{^{\circ}}}}
]
\cdot t +26^2 t^2
&=& 50^2\cdot t^2\\
\hline
\end{array}
}$$
$$\small{
\begin{array}{lcl}
50^2\cdot t^2 - 26^2 \cdot t^2 -2\cdot 20\cdot 26 \cdot \cos{ (25\ensurement{^{\circ}}) }\cdot t -20^2 &=& 0\\\\
1824\cdot t^2 - 1040 \cdot \cos{ (25\ensurement{^{\circ}}) }\cdot t - 400 &=& 0 \\\\
t_{1,2} &=& \frac
{
1040\cdot \cos{ (25\ensurement{^{\circ}}) } \pm
\sqrt{
1040^2\cdot \cos^2{ (25\ensurement{^{\circ}}) } - 4\cdot 1824 \cdot (-400)
}
}
{ 2\cdot 1824 } \\\\
t_{1,2} &=& \frac
{
1040\cdot \cos{ (25\ensurement{^{\circ}}) } \pm
\sqrt{
1040^2\cdot \cos^2{ (25\ensurement{^{\circ}}) } + 2918400
}
}
{ 2\cdot 1824 } \\\\
t_{1,2} &=& \frac
{
1040\cdot \cos{ (25\ensurement{^{\circ}}) } \pm \sqrt{3806819.53932 }
}
{ 3648 } \\\\
t_{1,2} &=& \frac { 1040\cdot \cos{ (25\ensurement{^{\circ}}) } \pm 1951.10725982 } { 3648 } \\\\
t_{1,2} &=& \frac{ 942.560098518 \pm 1951.10725982 } { 3648 } \\\\
t &=& 0.79322021884~ \text{hours}\\
t &=& 47.5932131305~ \text{minutes}\\
\hline
\end{array}
}$$
$$\small{
\begin{array}{llcl}
\text{Azimuth angle: }
& \tan{(\alpha_{\text{azimuth}})} &=&
\frac{ \sin{ (x) } }{ \cos{ (x) } } \\\\
& \tan{(\alpha_{\text{azimuth}})} &=&
\dfrac{ 20\cdot \sin{(15\ensurement{^{\circ}})}
+ 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t }
{ 20\cdot \cos{(15\ensurement{^{\circ}})}
+ 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t } \\\\
& \tan{(\alpha_{\text{azimuth}})} &=& \dfrac{ 18.4330562411 } { 35.1172069869 } \\\\
& \tan{(\alpha_{\text{azimuth}})} &=& 0.52490097655 \\\\
&\alpha_{\text{azimuth}} &=& \arctan{ ( 0.52490097655 ) } \\
&\mathbf{\alpha_{\text{azimuth}} } & \mathbf{=} & \mathbf{27.6950249044\ensurement{^{\circ}} }\\
\end{array}
}$$
The speed boat needs to set a course for
$$N\;27^0~41'~42"~E$$
Thank you Melody, i don't need to divide by 16, my mistake!