A coast guard cutter detects an unidentified ship at 20.0km in the direction 15.0 degrees east of north. The ship is traveling at 26.0km/h on a course at 40.0 degrees east of north. The Coast Guard wishes to send a speed boat to intercept and inveatigate the vessel. If the speedboat travels at 50.0km/h , in what direction should it head?
We set t = time
\small{ \begin{array}{lcl} \text{Ship position: } \vec{p}= 20\cdot\binom { \sin{(15\ensurement{^{\circ}})} } { \cos{(15\ensurement{^{\circ}})} } \\\\ \text{Ship traveling: } \vec{s}= 26\cdot t \cdot\binom { \sin{(40\ensurement{^{\circ}})} } { \cos{(40\ensurement{^{\circ}})} } \\\\ \text{Guard cutter traveling: } \vec{c}= 50\cdot t\cdot\binom { \sin{(x)} } { \cos{(x)} } \\\\ \vec{p} + \vec{s} & = &\vec{c} \\\\ 20\cdot\binom { \sin{(15\ensurement{^{\circ}})} } { \cos{(15\ensurement{^{\circ}})} } + 26\cdot t \cdot\binom { \sin{(40\ensurement{^{\circ}})} } { \cos{(40\ensurement{^{\circ}})} } &=& 50\cdot t\cdot\binom { \sin{(x) } } { \cos{(x)} } \\\\ \hline 20\cdot \sin{(15\ensurement{^{\circ}})} + 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t &=&50\cdot t\cdot \sin{(x)} \\ 20\cdot \cos{(15\ensurement{^{\circ}})} + 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t &=&50\cdot t\cdot \cos{(x})} \\ \hline \text{Square both sides }\\ \left[ 20\cdot \sin{(15\ensurement{^{\circ}})} + 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t \right]^2 &=&50^2\cdot t^2 \sin^2{(x)} \\ \left[ 20\cdot \cos{(15\ensurement{^{\circ}})} + 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t \right]^2 &=&50^2\cdot t^2 \cos^2{(x})} \\ \hline \text{Add }\\ \left[ 20\cdot \sin{(15\ensurement{^{\circ}})} + 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t \right]^2 \\ + \left[ 20\cdot \cos{(15\ensurement{^{\circ}})} + 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t \right]^2 &=& 50^2\cdot t^2 [ \sin^2{(x)} + \cos^2{(x})} ] \\ \hline \sin^2{(x)} + \cos^2{(x})} = 1\\ \left[ 20\cdot \sin{(15\ensurement{^{\circ}})} + 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t \right]^2 \\ + \left[ 20\cdot \cos{(15\ensurement{^{\circ}})} + 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t \right]^2 &=& 50^2\cdot t^2\\ \hline 20^2\cdot \sin^2{(15\ensurement{^{\circ}})} + 2\cdot 20\cdot 26 \cdot \sin{(15\ensurement{^{\circ}})} \cdot \sin{(40\ensurement{^{\circ}})} \cdot t + 26^2\cdot t^2 \sin^2{(40\ensurement{^{\circ}})} \\ +20^2\cdot \cos^2{(15\ensurement{^{\circ}})} + 2\cdot 20\cdot 26 \cdot \cos{(15\ensurement{^{\circ}})} \cdot \cos{(40\ensurement{^{\circ}})} \cdot t +26^2 \cdot t^2 \cos^2{(40\ensurement{^{\circ}})} &=& 50^2\cdot t^2\\ \hline \sin^2{ (15\ensurement{^{\circ}}) } + \cos^2{ (15\ensurement{^{\circ}}) } = 1\\ \sin^2{ (40\ensurement{^{\circ}}) } + \cos^2{ (40\ensurement{^{\circ}}) } = 1\\ 20^2 + 2\cdot 20\cdot 26 \cdot [ \underbrace{ \cos{ (15\ensurement{^{\circ}}) } \cdot \cos{ (40\ensurement{^{\circ}}) } + \sin{ (15\ensurement{^{\circ}}) } \cdot \sin{ (40\ensurement{^{\circ}}) } }_{=\cos{(40\ensurement{^{\circ}}-15\ensurement{^{\circ}})}=\cos{25\ensurement{^{\circ}}}} ] \cdot t +26^2 t^2 &=& 50^2\cdot t^2\\ \hline \end{array} }
502⋅t2−262⋅t2−2⋅20⋅26⋅cos(25\ensurement∘)⋅t−202=01824⋅t2−1040⋅cos(25\ensurement∘)⋅t−400=0t1,2=1040⋅cos(25\ensurement∘)±√10402⋅cos2(25\ensurement∘)−4⋅1824⋅(−400)2⋅1824t1,2=1040⋅cos(25\ensurement∘)±√10402⋅cos2(25\ensurement∘)+29184002⋅1824t1,2=1040⋅cos(25\ensurement∘)±√3806819.539323648t1,2=1040⋅cos(25\ensurement∘)±1951.107259823648t1,2=942.560098518±1951.107259823648t=0.79322021884 hourst=47.5932131305 minutes
Azimuth angle: tan(αazimuth)=sin(x)cos(x)tan(αazimuth)=20⋅sin(15\ensurement∘)+26⋅sin(40\ensurement∘)⋅t20⋅cos(15\ensurement∘)+26⋅cos(40\ensurement∘)⋅ttan(αazimuth)=18.433056241135.1172069869tan(αazimuth)=0.52490097655αazimuth=arctan(0.52490097655)αazimuth=27.6950249044\ensurement∘
The speed boat needs to set a course for
N270 41′ 42" E
Thank you Melody, i don't need to divide by 16, my mistake!
