Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #9
avatar+26396 
+5

In general:

 

The choice of the parametres "a" and "b" determine the angel - orientation:

 

atan2(Δy,Δx) angle counterclockwise direction start from 'x'-axis atan2(Δy,Δx) angle clockwise direction start from 'x'-axis atan2(Δx,Δy) angle clockwise direction start from 'y'-axis atan2(Δx,Δy) angle counterclockwise direction start from 'y'-axis 

atan2(Δy,Δx) angle clockwise direction start from '-x'-axis atan2(Δy,Δx) angle counterclockwise direction start from '-x'-axis atan2(Δx,Δy) angle clockwise direction start from '-y'-axis atan2(Δx,Δy) angle counterclockwise direction start from '-y'-axis 

.
20.08.2015
 #1
avatar+26396 
+10

A coast guard cutter detects an unidentified ship at 20.0km in the direction 15.0 degrees east of north. The ship is traveling at 26.0km/h on a course at 40.0 degrees east of north. The Coast Guard wishes to send a speed boat to intercept and inveatigate the vessel. If the speedboat travels at 50.0km/h , in what direction should it head?

We set t = time

 

\small{   \begin{array}{lcl}   \text{Ship position: }   \vec{p}= 20\cdot\binom  { \sin{(15\ensurement{^{\circ}})} }  { \cos{(15\ensurement{^{\circ}})} } \\\\  \text{Ship traveling: }   \vec{s}= 26\cdot t \cdot\binom  { \sin{(40\ensurement{^{\circ}})} }  { \cos{(40\ensurement{^{\circ}})} } \\\\  \text{Guard cutter traveling: }  \vec{c}= 50\cdot t\cdot\binom  { \sin{(x)} }  { \cos{(x)} } \\\\  \vec{p} + \vec{s} & = &\vec{c} \\\\  20\cdot\binom  { \sin{(15\ensurement{^{\circ}})} }  { \cos{(15\ensurement{^{\circ}})} }  +  26\cdot t \cdot\binom  { \sin{(40\ensurement{^{\circ}})} }  { \cos{(40\ensurement{^{\circ}})} }  &=&  50\cdot t\cdot\binom  { \sin{(x) } }  { \cos{(x)} } \\\\  \hline  20\cdot \sin{(15\ensurement{^{\circ}})}   + 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t  &=&50\cdot t\cdot \sin{(x)} \\  20\cdot \cos{(15\ensurement{^{\circ}})}   + 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t  &=&50\cdot t\cdot \cos{(x})} \\  \hline  \text{Square both sides }\\  \left[  20\cdot \sin{(15\ensurement{^{\circ}})}   + 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t \right]^2  &=&50^2\cdot t^2 \sin^2{(x)} \\  \left[  20\cdot \cos{(15\ensurement{^{\circ}})}   + 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t \right]^2  &=&50^2\cdot t^2 \cos^2{(x})} \\  \hline  \text{Add }\\  \left[  20\cdot \sin{(15\ensurement{^{\circ}})}   + 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t \right]^2 \\  + \left[  20\cdot \cos{(15\ensurement{^{\circ}})}   + 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t \right]^2  &=& 50^2\cdot t^2 [ \sin^2{(x)} + \cos^2{(x})} ] \\  \hline  \sin^2{(x)} + \cos^2{(x})} = 1\\  \left[  20\cdot \sin{(15\ensurement{^{\circ}})}   + 26\cdot \sin{(40\ensurement{^{\circ}})}\cdot t \right]^2 \\  + \left[  20\cdot \cos{(15\ensurement{^{\circ}})}   + 26\cdot \cos{(40\ensurement{^{\circ}})}\cdot t \right]^2  &=& 50^2\cdot t^2\\  \hline   20^2\cdot \sin^2{(15\ensurement{^{\circ}})}   + 2\cdot 20\cdot 26 \cdot \sin{(15\ensurement{^{\circ}})}   \cdot \sin{(40\ensurement{^{\circ}})} \cdot t  + 26^2\cdot t^2 \sin^2{(40\ensurement{^{\circ}})} \\  +20^2\cdot \cos^2{(15\ensurement{^{\circ}})}   + 2\cdot 20\cdot 26 \cdot \cos{(15\ensurement{^{\circ}})}   \cdot \cos{(40\ensurement{^{\circ}})} \cdot t  +26^2 \cdot t^2 \cos^2{(40\ensurement{^{\circ}})}   &=& 50^2\cdot t^2\\  \hline  \sin^2{ (15\ensurement{^{\circ}}) } + \cos^2{ (15\ensurement{^{\circ}}) } = 1\\  \sin^2{ (40\ensurement{^{\circ}}) } + \cos^2{ (40\ensurement{^{\circ}}) } = 1\\  20^2 + 2\cdot 20\cdot 26 \cdot  [  \underbrace{  \cos{ (15\ensurement{^{\circ}}) } \cdot \cos{ (40\ensurement{^{\circ}}) }   +   \sin{ (15\ensurement{^{\circ}}) } \cdot \sin{ (40\ensurement{^{\circ}}) }  }_{=\cos{(40\ensurement{^{\circ}}-15\ensurement{^{\circ}})}=\cos{25\ensurement{^{\circ}}}}  ]   \cdot t +26^2 t^2  &=& 50^2\cdot t^2\\  \hline  \end{array}  }

502t2262t222026cos(25\ensurement)t202=01824t21040cos(25\ensurement)t400=0t1,2=1040cos(25\ensurement)±10402cos2(25\ensurement)41824(400)21824t1,2=1040cos(25\ensurement)±10402cos2(25\ensurement)+291840021824t1,2=1040cos(25\ensurement)±3806819.539323648t1,2=1040cos(25\ensurement)±1951.107259823648t1,2=942.560098518±1951.107259823648t=0.79322021884 hourst=47.5932131305 minutes

 

 

Azimuth angle: tan(αazimuth)=sin(x)cos(x)tan(αazimuth)=20sin(15\ensurement)+26sin(40\ensurement)t20cos(15\ensurement)+26cos(40\ensurement)ttan(αazimuth)=18.433056241135.1172069869tan(αazimuth)=0.52490097655αazimuth=arctan(0.52490097655)αazimuth=27.6950249044\ensurement

 

The speed boat needs to set a course for

   N270 41 42" E

 Thank you Melody, i don't need to divide by 16, my mistake!

20.08.2015