Loading [MathJax]/jax/output/SVG/jax.js
 

hectictar

avatar
Benutzernamehectictar
Punkte9488
Membership
Stats
Fragen 10
Antworten 3005

 #1
avatar+9488 
+4
a.__ -4x6  =  -2916 ___ Divide both sides of the equation by  -4
  x6  =  729

 

 

Take the ± 6th root of both sides
  x  =  ±6729   Plug this into a calculator or note that  36  =  729  so we can rewrite  729  as  36
  x  =  ±636

 

 

Simplify
  x  =  ± 3    

 

 

 

This equation has two solutions. There are two values of  x  which make the equation true.

They are:  x = 3   and   x = -3

       

b.

93 - 7x3  =  23   Subtract  93  from both sides of the equation.
  -7x3  =  -70

 

 

Divide both sides of the equation by  -7
  x3  =  10   Take the cube root of both sides.
  x  =  310

 

 

To get an approximate solution, plug  310  into a calculator.
  x  ≈  2.154    

 

 

     
c. (-5p)5  =  -65   Take the fifth root of both sides.
  -5p  =  565

 

 

Divide both sides by  -5
  p  =  5655   SImplify
  p  =  515655

 

 

 
  p  =  1  5655    
  p  =  5655

 

 

 
  p  ≈  0.461    

 

 

     
d. 7+14x3 = 5   Add  7  to both sides.
  14x3 = 2

 

 

Multiply both sides by  (x - 3)  and note  x ≠ 3
  14  =  2(x - 3)   Divide both sides by  2
  7  =  x - 3

 

 

Add  3  to both sides
  10  =  x    
  x  =  10

 

 

 
07.06.2019
 #1
avatar+9488 
+4

Assuming that     f(x) = 2+20x3     and     g(x) = 3+322x+4

 

a.__  
  y = f(x) y = 2+20x3

 

 

y  is undefined when  x - 3 = 0  so there is a vertical asymptote at  x = 3
  y2 = 20x3 (x3)(y2) = 20 x3 = 20y2

 

 

x  is undefined when  y - 2 = 0  so there is a horizontal asymptote at  y = 2
 

The equations for the vertical and horizontal asymptotes of the graph of  f(x)  are:   x = 3   and   y = 2

 

b.

 
  y = g(x) y = 3+322x+4

 

 

y  is undefined when  2x + 4 = 0  so there is a vertical asymptote at  x = -2

  y+3 = 322x+4 (2x+4)(y+3) = 32 2x+4 = 32y+3

 

 

x  is undefined when  y + 3 = 0  so there is a horizontal asymptote at  y = -3
 

The equations for the vertical and horizontal asymptotes of the graph of  g(x)  are:   x = -2   and   y = -3

 

c.

 
 

Here is a graph:  https://www.desmos.com/calculator/7zrrangdvv

 

 

(Note you can hide or show  f(x) or g(x)  and its asymptotes by clicking the circles beside the function.)
  Graph 2  belongs to  f(x)  and  graph 1  belongs to  g(x) .

 

d.

 
  A possible function is:     f(x) = 3+1x4_
07.06.2019