(4, 1) | = | A |
(4, -7) | = | D |
(-4, -9) | = | C |
(4, 2) | = | B |
https://www.desmos.com/calculator/ixbameckcj
Does that help?
\(3\sin\theta\ =\ \sin\theta-\sqrt3\\~\\ 3\sin\theta-\sin\theta\ =\ -\sqrt3\\~\\ 2\sin\theta\ =\ -\sqrt3\\~\\ \sin\theta\ =\ -\frac{\sqrt3}{2}\)
We can look at a unit circle to see what values of θ in the interval [0, 2π] will satisfy \(\sin\theta=-\frac{\sqrt3}{2}\) .
Here is a pretty clear unit circle:
https://en.wikibooks.org/wiki/Trigonometry/Trigonometric_Unit_Circle_and_Graph_Reference
\(\theta\ =\ \frac{4\pi}{3}\\~\\ \theta\ =\ \frac{5\pi}{3}\)
.