Loading [MathJax]/jax/output/SVG/jax.js
 

gandalfthegreen

avatar
Benutzernamegandalfthegreen
Punkte1119
Membership
Stats
Fragen 0
Antworten 423

 #1
avatar+1119 
+10

Hallo Gast, 

 

in dem Bild ist als Fläche (A) ein Trapez zu sehen. Die Fläche multipliziert mit der Länge (l), ergibt das Volumen (V), was ausgehoben werden muss:

 

V=ATrapezl[1]

 

Ich hoffe, soweit ist es erst mal klar. 

 

 

 

 

 

So, nun zur Berechnung der Trapezfläche habe ich diese zerlegt, wie du auf den Bild siehst. Dabei haben wir ein Rechteck (Blau) und die 2 roten Dreiecke, die Zusammen auch ein Rechteck ergeben, aber dazu später mehr. 

 

Die Fläche des Trapez setzt sich also formel so zusammen:

 

 

ATrapez=ARechteck+2ADreieck[2]

 

Die Rechtecksfläche berechnet sich aus Breite (b) mal Höhe (h):

 

ARechteck=bh=45m12m=540m2[3]

 

Die Dreiecksfläche für rechtwinklige Dreiecke berechnet sich allgemein;

 

ADreieck=ab2[4]

 

wobei a und b die Seiten sind, die Rechtwinklig aufeinander stehen. Das ist zum Einen bei uns die Höhe des Trapezes, also die 12 m (b=12 m). die andere Seite wird über die Winkelbeziehung berechnet:

 

tan(α)=ab[5]

 

Der Winkel Alpha, ist der spitze Winkel neben den 58°. Der berechnet sich aus 90°- 58° = 32°

Umgestellt nach a:

 

a=btan(α)[6]

 

 

Nun kannst du alles separat berechnen oder alles zusammen [6] in [4] einsetzten:

 

ADreieck=bbtan(α)2=b2tan(α)2[7]

 

ADreieck=(12m)2tan(32)2=44,99m2[8]

 

 

 

So,Ergebnisse der Gleichung [8] und GLeichung [3]  in Gleichung [2]

 

 

ATrapez=ARechteck+2ADreieck=540m2+244,99m2=629,98m2[9]

 

und das in Gleichung [1]. Aufpassen auf die Einheiten 1km=1000 m 

 

V=ATrapezl=629,98m21000m=629980m3

 

gruß 

 

gandalfthegreen

31.01.2017