heureka

avatar
Benutzernameheureka
Punkte26367
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26367 
+3

Triangle $ABC$ is inscribed in equilateral triangle $PQR$, as shown.

If $PC = 3$, $BP = CQ = 2$, and $\angle ACB = 90^\circ$, then compute $AQ$.

 

Let u = BC

Let v = CA

Let w = AB

Let x = AQ

 

Let PQ = PR = RQ = 5

 

Let BR = PR - BP \(= 5-2=3\)

Let AR = RQ - AQ \(= 5 - x\)

 

Using the Law of Cosines:

\(\begin{array}{|rcll|} \hline u^2 &=& BP^2 + PC^2 - 2\cdot BP \cdot PC\cdot \cos(60^{\circ}) \quad & | \quad 2\cdot \cos(60^{\circ}) = 2\cdot \frac12 = 1 \\ u^2 &=& BP^2 + PC^2 - BP \cdot PC \quad & | \quad BP =2 \quad PC = 3 \\ u^2 &=& 2^2 + 3^2 - 2 \cdot 3 \\ \mathbf{u^2} & \mathbf{=} & \mathbf{2^2 + 3^2 - 6} \\ \hline \end{array}\)

 

Using the Law of Cosines again:

\(\begin{array}{|rcll|} \hline v^2 &=& CQ^2 + AQ^2 - 2\cdot CQ \cdot AQ\cdot \cos(60^{\circ}) \quad & | \quad 2\cdot \cos(60^{\circ}) = 2\cdot \frac12 = 1 \\ v^2 &=& CQ^2 + AQ^2 - CQ \cdot AQ \quad & | \quad CQ =2 \quad AQ = x \\ \mathbf{v^2} & \mathbf{=} & \mathbf{2^2 + x^2 - 2x} \\ \hline \end{array}\)

 

Using the Law of Cosines again:

\(\begin{array}{|rcll|} \hline w^2 &=& BR^2 + AR^2 - 2\cdot BR \cdot AR\cdot \cos(60^{\circ}) \quad & | \quad 2\cdot \cos(60^{\circ}) = 2\cdot \frac12 = 1 \\ w^2 &=& BR^2 + AR^2 - BR \cdot AR \quad & | \quad BR =3 \quad AR = 5-x \\ \mathbf{w^2} & \mathbf{=} & \mathbf{3^2 + (5-x)^2 - 3 \cdot (5-x)} \\ \hline \end{array}\)

 

Using Pythagoras' theorem:

\(\begin{array}{|rcll|} \hline u^2+v^2&=& w^2 \\ (2^2 + 3^2 - 6) + (2^2 + x^2 - 2x) &=& 3^2 + (5-x)^2 - 3 \cdot (5-x) \\ 2^2 + \not{3^2} - 6 + 2^2 + x^2 - 2x &=& \not{3^2} + (5-x)^2 - 3 \cdot (5-x) \\ 2^2 - 6 + 2^2 + x^2 - 2x &=& (5-x)^2 - 3 \cdot (5-x) \\ 2 + x^2 - 2x &=& (5-x)^2 - 3 \cdot (5-x) \\ 2 + \not{x^2} - 2x &=& 25 - 10x + \not{x^2} -15+3x \\ 2 - 2x &=& 25 - 10x -15+3x \\ 2 - 2x &=& 10 - 7x \\ 5x &=& 8 \\ x &=& \frac85 \\ \mathbf{x} & \mathbf{=} & \mathbf{1.6} \\ \hline \end{array}\)

 

AQ is 1.6

 

laugh

05.12.2017
 #7
avatar+26367 
+3

What is the degree of the function that generates the data shown?

 

\(\displaystyle \begin{array}{|r|rrrrr|} \hline x & y\\ \hline -3 & 159 \\ & & -130 \\ -2 & 29 & & 100 \\ & & -30 & & -72 \\ -1 & -1 & & 28 & & 48 \\ & & -2 & & -24 & \\ 0 & -3 & & 4 & & 48 \\ & & 2 & & 24 & \\ 1 & \color{red}d_0=-1 & & 28 & & 48 \\ & & \color{red}d_1=30 & & 72 & \\ 2 & 29 & & \color{red}d_2=100 & & 48 \\ & & 130 & & \color{red}d_3=120 & \\ 3 & 159 & & 220 & & \color{red}d_4=48 \\ & & 350 & & 168 & \\ 4 & 509 & & 388 & & \\ & & 738 & & \\ 5 & 1247& & & & \\ \hline \end{array}\)

 

\(\displaystyle \begin{array}{|rcll|} \hline y(x) &=& \binom{x-1}{0}\cdot {\color{red}d_0 } + \binom{x-1}{1}\cdot {\color{red}d_1 } + \binom{x-1}{2}\cdot {\color{red}d_2 } + \binom{x-1}{3}\cdot {\color{red}d_3 } + \binom{x-1}{4}\cdot {\color{red}d_4 } \\\\ &=& \binom{x-1}{0}\cdot ( {\color{red}-1 } ) + \binom{x-1}{1}\cdot {\color{red}30 } + \binom{x-1}{2}\cdot {\color{red}100 } + \binom{x-1}{3}\cdot {\color{red}120 } + \binom{x-1}{4}\cdot {\color{red}48 } \\\\ &=& -1 \\ &&+~ \underbrace{30 \cdot(x-1)}_{\text{max degree } 1} \\ &&+~ \underbrace{100 \cdot\left(\frac{x-1}{2}\right)\cdot \left(\frac{x-2}{1}\right)}_{\text{max degree } 2} \\ &&+~ \underbrace{120 \cdot \left(\frac{x-1}{3}\right)\cdot \left(\frac{x-2}{2}\right)\cdot \left(\frac{x-3}{1}\right)}_{\text{max degree } 3} \\ &&+~ \underbrace{48 \cdot\left(\frac{x-1}{4}\right)\cdot \left(\frac{x-2}{3}\right)\cdot \left(\frac{x-3}{2}\right)\cdot \left(\frac{x-4}{1}\right)}_{\text{max degree } \color{red}4} \\ &=& \mathbf{2x^4-3} \\ \hline \end{array}\)

 

expand see WolframAlpha:

 

 

If the difference \(d_i\) is constant, so the degree of the polynomial to calculate the coefficients is \(i\).

\({\color{red}d_4}=48\) is constant, so the degree is \({\color{red}4}\)

 

If the difference \(d_i \) is constant, so the degree of the polynomial to calculate the sum of the coefficients is \(i+1\).

 

laugh

01.12.2017
 #2
avatar+26367 
+2

Ich schaffe den Beweis folgender Induktion nicht:

 

\(\displaystyle\sum_{k=n}^{2n-1} \frac{1}{k} = \displaystyle\sum_{k=1}^{2n-1} \frac{{(-1)}^{k+1}}{k} \)

 

Für alle \(n \ge 1\)

 

Induktionsanfang:

\(n = 1:\)   linke Seite: \(\frac{1}{1} = 1 \)

                rechte Seite:   \(\frac{(-1)^2}{1} = 1\)

Für \(n=1 \) sind beide Seiten gleich!

 

Induktionsschluss:

\(n+1:\)

\(\begin{array}{|rcll|} \hline && \displaystyle\sum_{k=n+1}^{2(n+1)-1} \frac{1}{k} \\\\ &=& \displaystyle\sum_{k=n+1}^{2n+2-1} \frac{1}{k} \\\\ &=& \displaystyle\sum_{k=n+1}^{2n+1} \frac{1}{k} \\\\ &=& \displaystyle\sum_{k=n}^{2n-1} \left(\frac{1}{k} \right) -\frac{1}{n} +\frac{1}{2n} + \frac{1}{2n+1} \\\\ &\overset{I.A.}{=}& \displaystyle \sum_{k=1}^{2n-1} \left(\frac{{(-1)}^{k+1}}{k}\right) -\frac{1}{n} +\frac{1}{2n} + \frac{1}{2n+1} \\\\ &=& \displaystyle \sum_{k=1}^{2n-1} \left(\frac{{(-1)}^{k+1}}{k}\right) -\frac{1}{n}\left(1-\frac{1}{2}\right) + \frac{1}{2n+1} \\\\ &=& \displaystyle \sum_{k=1}^{2n-1} \left(\frac{{(-1)}^{k+1}}{k}\right) -\frac{1}{2n} + \frac{1}{2n+1} \\\\ &=& \displaystyle \sum_{k=1}^{2n-1} \left(\frac{{(-1)}^{k+1}}{k}\right) +\frac{(-1)^{2n+1}}{2n} + \frac{(-1)^{2n+1+1}}{2n+1} \\\\ &=& \displaystyle \sum_{k=1}^{2n} \left(\frac{{(-1)}^{k+1}}{k}\right) + \frac{(-1)^{2n+1+1}}{2n+1} \\\\ &=& \displaystyle \sum_{k=1}^{2n+1} \left(\frac{{(-1)}^{k+1}}{k}\right) \\\\ &=& \displaystyle \sum_{k=1}^{2n+2-1} \left(\frac{{(-1)}^{k+1}}{k}\right) \\\\ &=& \displaystyle \sum_{k=1}^{2(n+1)-1} \left(\frac{{(-1)}^{k+1}}{k}\right) \quad \checkmark \\\\ \hline \end{array}\)

 

 

laugh

28.11.2017