log15(5−n)=log15(4n−5)5−n=4n−55=5n−510=5nn=105n=2
log5(-a)=log5(29)
log5(−a)=log5(29)−a=29a=−29
2 hoch 5.299.999 ?
log6(3*b)=log6(5-(2*b))
log6(3b)=log6(5−2b)3b=5−2b5b=5b=1
0.2x + 0.3(x-27000)=800 Solve for x
0.2⋅x+0.3⋅(x−27000)=8000.2⋅x+0.3⋅x−0.3⋅27000=8000.5⋅x−0.3⋅27000=8000.5⋅x−8100=800|+81000.5⋅x=800+81000.5⋅x=89000.5⋅x=8900|⋅2x=17800
direction angle = φ
magnitude = m
→F1=−100⋅(sin(25∘)cos(25∘))→F1=−200⋅(sin(80∘)cos(80∘))→F=→F1+→F2→F=−100⋅(sin(25∘)cos(25∘))−200⋅(sin(80∘)cos(80∘))→F=−[(100⋅sin(25∘)+200⋅sin(80∘)100⋅cos(25∘)+200⋅cos(80∘))]→F=−[(100⋅0.42261826174+200⋅0.98480775301100⋅0.90630778704+200⋅0.17364817767)]→F=−[(42.2618261741+196.96155060290.6307787037+34.7296355334)]→F=−[(239.223376777125.360414237)]tan(φ)=239.223376777125.360414237φ=62.3440776108∘m=√239.2233767772+125.3604142372m=270.079724256→F=−m⋅(sin(φ)cos(φ))→F=−270.079724256⋅(sin(62.3440776108∘)cos(62.3440776108∘))
The magnitude is 270 pounds.
The direction is N62.3∘E
volume of a cylinder that is 150 ft tall and a radius of 50 ft
Volume = V Tall = h Radius = r
V=π⋅r2⋅hV=π⋅(50 ft.)2⋅150 ft.V=π⋅2500 ft.2⋅150 ft.V=375000 ft.3
∫45dx + 6∫12dx
∫54 dx+6⋅∫12 dx=54⋅∫dx+6⋅12⋅∫dx=54⋅x+6⋅12⋅x=54⋅x+72⋅x=126⋅x
1.
9⋅(x−3)=10⋅189x−27=1809x=180+279x=207x=23
2.
x2=9⋅(9+7)x2=9⋅16x2=144x=12
15cos30 = ?
15⋅cos(30)=15⋅√32=7.5⋅√3=7.5⋅0.86602540378=6.49519052838