heureka

avatar
Benutzernameheureka
Punkte26388
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26388 
+5

You can get 28200 if u dont reduce it with 5 % the last day.

 

You get max 20 * 1410 = 28200.

 

$$\small{\text{$
\boxed{~~t_n=0.95^n\cdot \left( \dfrac{25547}{0.95}-20\cdot 1410 \right)+20\cdot 1410~~}
$}}\\\\
\small{\text{We have $t_n = 27924$ and get n by rearrange:
}}\\\\
\small{\text{$
\boxed{
n=\dfrac
{\ln{\left( \dfrac{t_n -20\cdot 1410}{ \dfrac{25547}{0.95} -20\cdot 1410} \right)}}
{\ln{(0.95)}}
}
$}}\\\\\\
\small{\text{$
\begin{array}{rcl}
n &=& \dfrac
{\ln{\left( \dfrac{27924 -20\cdot 1410}{\dfrac{25547}{0.95}-20\cdot 1410} \right)}}
{\ln{(0.95)}}\\\\
n &=& \dfrac
{\ln{\left( \dfrac{-276}{ -1308.42105263} \right)}}
{\ln{(0.95)}}\\\\
n &=& \dfrac
{\ln{\left( 0.21094127112\right)}}
{\ln{(0.95)}}\\\\
n &=& \dfrac
{-1.55617552018}
{-0.05129329439}\\\\
\mathbf{n} & \mathbf{=} & \mathbf{30.3387711544}
\end{array}
$}}$$

 

It will take to get 27924 about 30.3387711544 days

day 30 = 27919.16 

day 31 = 27933.20


$$\small{\text{$
\begin{array}{lr}
\small{\text{day }} 1 & 26957.00 \\
\small{\text{day }} 2 & 27019.15 \\
\small{\text{day }} 3 & 27078.19 \\
\small{\text{day }} 4 & 27134.28 \\
\small{\text{day }} 5 & 27187.57 \\
\small{\text{day }} 6 & 27238.19 \\
\small{\text{day }} 7 & 27286.28 \\
\small{\text{day }} 8 & 27331.97 \\
\small{\text{day }} 9 & 27375.37 \\
\small{\text{day }} 10 & 27416.60 \\
\small{\text{day }} 11 & 27455.77 \\
\small{\text{day }} 12 & 27492.98 \\
\small{\text{day }} 13 & 27528.33 \\
\small{\text{day }} 14 & 27561.92 \\
\small{\text{day }} 15 & 27593.82 \\
\small{\text{day }} 16 & 27624.13 \\
\small{\text{day }} 17 & 27652.92 \\
\small{\text{day }} 18 & 27680.28 \\
\small{\text{day }} 19 & 27706.26 \\
\small{\text{day }} 20 & 27730.95 \\
\small{\text{day }} 21 & 27754.40 \\
\small{\text{day }} 22 & 27776.68 \\
\small{\text{day }} 23 & 27797.85 \\
\small{\text{day }} 24 & 27817.96 \\
\small{\text{day }} 25 & 27837.06 \\
\small{\text{day }} 26 & 27855.20 \\
\small{\text{day }} 27 & 27872.44 \\
\small{\text{day }} 28 & 27888.82 \\
\small{\text{day }} 29 & 27904.38 \\
\small{\text{day }} 30 & 27919.16 \\
\small{\text{day }} 31 & 27933.20
\end{array}
$}}$$



.
30.07.2015
 #2
avatar+26388 
+8

Find The age for a rock for which you determine that 65% as the original uranium – 238 remainswhile the other 35% has decayed into lead

 

I assume: uranium-lead decay route $${}^{238}U$$ to $${}^{206}{Pb}$$

 

(i)

$$\boxed{~N_t = N_0\cdot e^{-k\cdot t} ~~(1)~} \quad \small{\text{k, is called the decay constant.}}\\ \small{\text{$N_0$ is the initial number of nuclei (at time zero), and}} \\ \small{\text{$N_t$ is the number remaining after the time interval.}} \\ \small{\text{We can also write our equation:~}}
\boxed{~\ln{ \left( \dfrac{N_t}{N_0} } \right) = -k\cdot t ~~(2)~}$$

(ii)

$$\small{\text{Relationship between the decay constant, k, and half-life, $t_{1/2}$.}}\\
\small{\text{We set $N_{t_{1/2}} = \dfrac{N_0}{2} $ in (1)~so we have $ \dfrac{N_0}{2}=N_0\cdot e^{-k\cdot t_{1/2}} $ and get }}\\
\boxed{~ k = \dfrac{ \ln{(2)} }{ t_{1/2} } ~~(3)~}$$

(iii)

$$\small{\text{We get t, if we rearrange (2). We have~~}}
\boxed{~ t = -\dfrac{1}{k} \cdot\ln{ \left( \dfrac{N_t}{N_0} } \right)~~(4)~}\\
\small{\text{We set k in (3) into (4). We have~~}}
\boxed{~ t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{N_t}{N_0} } \right)~~(5)~}\\$$

(iv)

$$\small{\text{$N_0 = {}^{238}U + {}^{206}Pb\cdot \dfrac{238}{206} $. And we have $35\%$ of ${}^{238}U$ is ${}^{206}Pb$ so }}\\
\small{\text{$N_0 = {}^{238}U + ({}^{238}U\cdot 35\%) \cdot \dfrac{238}{206}. $We obtain the latter quantity of ${}^{206}Pb$ by}}\\
\small{\text{multiplying the present mass of lead-206 by the ratio of the atomic mass of uranium}}\\
\small{\text{to that of lead, into which it has decayed. $N_t ={}^{238}U$. }}$$

$$\small{\text{ Finally
$\dfrac{N_t}{N_0} = \dfrac{ {}^{238}U } {{}^{238}U + ({}^{238}U\cdot 35\%) \cdot \dfrac{238}{206}} = \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} }
$
}}\\
\boxed{ \dfrac{N_t}{N_0} = \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} }
}$$

(v)

$$\small{\text{If we regard the half-life $t_{1/2}$ for the decay of}}\\
\small{\text{uranium-238 $({}^{238}U)$ to lead-206 $({}^{206}Pb)$ is $\mathbf{4.468\cdot 10^9~ yr }$, }}\\
\small{\text{we can calculate how old the rock is.}}\\
\small{\text{We now have
$t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} } } \right)
$
}}\\
\small{\text{or $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} } } \right)
$
}} \\
}}\\
\small{\text{or $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot
\left[ \ln{ (1) } -
\ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right)
\right]
$
}} \\
}}\\
\small{\text{Because $\ln{(1)}= 0$
}} \\
\small{\text{$t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot
\left[ 0 -
\ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right)
\right]
$
}} \\\\
\small{\text{and finally}}\\\\
\boxed{t = t_{1/2} \cdot \dfrac
{ \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) }
{ \ln(2) }}$$

(vi)

$$\small{\text{We calculate:}}\\
\small{\text{$
\begin{array}{rcl}
t &=&
t_{1/2} \cdot
\dfrac
{ \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) }
{ \ln(2) }\\
t &=& 4.468\cdot 10^9~ yr \cdot
\dfrac
{ \ln{ \left( 1.40436893204} \right) }
{ \ln(2) }\\\\
t &=& 4.468\cdot 10^9~ yr \cdot
\dfrac
{ 0.33958804319 }
{0.69314718056 }\\\\
t &=& 4.468\cdot 10^9~ yr \cdot 0.48992198586 \\\\
\mathbf{t} &\mathbf{=}& \mathbf{ 2.18897143282\cdot 10^9~ yr }
\end{array}
$}}$$

 

The rock is 2 188 971 432.82 years old 

 

see SAMPLE EXERCISE 21.7 : http://wps.prenhall.com/wps/media/objects/3313/3392670/blb2104.html 

 

29.07.2015