Find The age for a rock for which you determine that 65% as the original uranium – 238 remainswhile the other 35% has decayed into lead
I assume: uranium-lead decay route 238U to 206Pb
(i)
\boxed{~N_t = N_0\cdot e^{-k\cdot t} ~~(1)~} \quad \small{\text{k, is called the decay constant.}}\\ \small{\text{$N_0$ is the initial number of nuclei (at time zero), and}} \\ \small{\text{$N_t$ is the number remaining after the time interval.}} \\ \small{\text{We can also write our equation:~}} \boxed{~\ln{ \left( \dfrac{N_t}{N_0} } \right) = -k\cdot t ~~(2)~}
(ii)
Relationship between the decay constant, k, and half-life, t1/2.We set Nt1/2=N02 in (1)~so we have N02=N0⋅e−k⋅t1/2 and get k=ln(2)t1/2 (3)
(iii)
\small{\text{We get t, if we rearrange (2). We have~~}} \boxed{~ t = -\dfrac{1}{k} \cdot\ln{ \left( \dfrac{N_t}{N_0} } \right)~~(4)~}\\ \small{\text{We set k in (3) into (4). We have~~}} \boxed{~ t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{N_t}{N_0} } \right)~~(5)~}\\
(iv)
N0=238U+206Pb⋅238206. And we have 35% of 238U is 206Pb so N0=238U+(238U⋅35%)⋅238206.We obtain the latter quantity of 206Pb bymultiplying the present mass of lead-206 by the ratio of the atomic mass of uraniumto that of lead, into which it has decayed. Nt=238U.
Finally NtN0=238U238U+(238U⋅35%)⋅238206=11+35%⋅238206 NtN0=11+35%⋅238206
(v)
\small{\text{If we regard the half-life $t_{1/2}$ for the decay of}}\\ \small{\text{uranium-238 $({}^{238}U)$ to lead-206 $({}^{206}Pb)$ is $\mathbf{4.468\cdot 10^9~ yr }$, }}\\ \small{\text{we can calculate how old the rock is.}}\\ \small{\text{We now have $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} } } \right) $ }}\\ \small{\text{or $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} } } \right) $ }} \\ }}\\ \small{\text{or $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot \left[ \ln{ (1) } - \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) \right] $ }} \\ }}\\ \small{\text{Because $\ln{(1)}= 0$ }} \\ \small{\text{$t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot \left[ 0 - \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) \right] $ }} \\\\ \small{\text{and finally}}\\\\ \boxed{t = t_{1/2} \cdot \dfrac { \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) } { \ln(2) }}
(vi)
\small{\text{We calculate:}}\\ \small{\text{$ \begin{array}{rcl} t &=& t_{1/2} \cdot \dfrac { \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) } { \ln(2) }\\ t &=& 4.468\cdot 10^9~ yr \cdot \dfrac { \ln{ \left( 1.40436893204} \right) } { \ln(2) }\\\\ t &=& 4.468\cdot 10^9~ yr \cdot \dfrac { 0.33958804319 } {0.69314718056 }\\\\ t &=& 4.468\cdot 10^9~ yr \cdot 0.48992198586 \\\\ \mathbf{t} &\mathbf{=}& \mathbf{ 2.18897143282\cdot 10^9~ yr } \end{array} $}}
The rock is 2 188 971 432.82 years old
see SAMPLE EXERCISE 21.7 : http://wps.prenhall.com/wps/media/objects/3313/3392670/blb2104.html