Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26396 
+5

$(A)$Find a number $0x<14$thatsolvesthecongruence$9x9(mod14)$.$(B)$Find a number $0x<5$thatsolvesthecongruence$3x4(mod5)$.$(C)$Find a number $0x<1000$thatsolvesthecongruence$999x998(mod1000)$.$(D)$Find a number $0x<21$thatsolvesthecongruence$4x17(mod21)$.

 

\left\{  \begin{array}{l}  $(A)$\\  $(B)$\\  $(C)$\\  $(D)$  \end{array}  \right\}=  \left\{  \begin{array}{lcr}  x&=&1\\  x&=&3\\  x&=&2\\  x&=&20  \end{array}  \right\}, \small{\text{ because }  \left\{  \begin{array}{lcr}  9\cdot 1 &\equiv& 9 \pmod{14}\\  3\cdot 3 &\equiv& 4 \pmod{5}\\  999\cdot 2 &\equiv& 998 \pmod{1000}\\  4\cdot 20 &\equiv& 17 \pmod{21}\\  \end{array}  \right\}

 

31.07.2015
 #3
avatar+26396 
+5

You can get 28200 if u dont reduce it with 5 % the last day.

 

You get max 20 * 1410 = 28200.

 

  tn=0.95n(255470.95201410)+201410  We have tn=27924 and get n by rearrange: n=ln(tn201410255470.95201410)ln(0.95)n=ln(27924201410255470.95201410)ln(0.95)n=ln(2761308.42105263)ln(0.95)n=ln(0.21094127112)ln(0.95)n=1.556175520180.05129329439n=30.3387711544

 

It will take to get 27924 about 30.3387711544 days

day 30 = 27919.16 

day 31 = 27933.20


$$\small{\text{$
\begin{array}{lr}
\small{\text{day }} 1 & 26957.00 \\
\small{\text{day }} 2 & 27019.15 \\
\small{\text{day }} 3 & 27078.19 \\
\small{\text{day }} 4 & 27134.28 \\
\small{\text{day }} 5 & 27187.57 \\
\small{\text{day }} 6 & 27238.19 \\
\small{\text{day }} 7 & 27286.28 \\
\small{\text{day }} 8 & 27331.97 \\
\small{\text{day }} 9 & 27375.37 \\
\small{\text{day }} 10 & 27416.60 \\
\small{\text{day }} 11 & 27455.77 \\
\small{\text{day }} 12 & 27492.98 \\
\small{\text{day }} 13 & 27528.33 \\
\small{\text{day }} 14 & 27561.92 \\
\small{\text{day }} 15 & 27593.82 \\
\small{\text{day }} 16 & 27624.13 \\
\small{\text{day }} 17 & 27652.92 \\
\small{\text{day }} 18 & 27680.28 \\
\small{\text{day }} 19 & 27706.26 \\
\small{\text{day }} 20 & 27730.95 \\
\small{\text{day }} 21 & 27754.40 \\
\small{\text{day }} 22 & 27776.68 \\
\small{\text{day }} 23 & 27797.85 \\
\small{\text{day }} 24 & 27817.96 \\
\small{\text{day }} 25 & 27837.06 \\
\small{\text{day }} 26 & 27855.20 \\
\small{\text{day }} 27 & 27872.44 \\
\small{\text{day }} 28 & 27888.82 \\
\small{\text{day }} 29 & 27904.38 \\
\small{\text{day }} 30 & 27919.16 \\
\small{\text{day }} 31 & 27933.20
\end{array}
$}}$$



.
30.07.2015
 #4
avatar+26396 
+13

3.(xx+y+yxy)(x2xyx4y4)xx2+2xy+y2

 

=(xx+y+yxy)(x2xyx4y4)(x2+2xy+y2x)=(xx+y+yxy)(x(xy)x4y4)((x+y)2x)=(xx+y+yxy)((xy)(x+y)2x4y4)=(xx+y+yxy)((xy)(x+y)(x+y)x4y4)=(xx+y+yxy)((x2y2)(x+y)x4y4)=(xx+y+yxy)((x2y2)(x+y)(x2y2)(x2+y2))=(xx+y+yxy)(x+yx2+y2)=(x(xy)+y(x+y)(xy)(x+y))(x+yx2+y2)=(x2+y2(xy)(x+y))(x+yx2+y2)=1xy

 

29.07.2015
 #2
avatar+26396 
+8

Find The age for a rock for which you determine that 65% as the original uranium – 238 remainswhile the other 35% has decayed into lead

 

I assume: uranium-lead decay route 238U to 206Pb

 

(i)

\boxed{~N_t = N_0\cdot e^{-k\cdot t} ~~(1)~} \quad \small{\text{k, is called the decay constant.}}\\ \small{\text{$N_0$ is the initial number of nuclei (at time zero), and}} \\ \small{\text{$N_t$ is the number remaining after the time interval.}} \\ \small{\text{We can also write our equation:~}}  \boxed{~\ln{ \left( \dfrac{N_t}{N_0} } \right) = -k\cdot t ~~(2)~}

(ii)

Relationship between the decay constant, k, and half-life, t1/2.We set Nt1/2=N02 in (1)~so we have N02=N0ekt1/2 and get  k=ln(2)t1/2  (3) 

(iii)

\small{\text{We get t, if we rearrange (2). We have~~}}  \boxed{~ t = -\dfrac{1}{k} \cdot\ln{ \left( \dfrac{N_t}{N_0} } \right)~~(4)~}\\  \small{\text{We set k in (3) into (4). We have~~}}  \boxed{~ t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{N_t}{N_0} } \right)~~(5)~}\\

(iv)

N0=238U+206Pb238206. And we have 35% of 238U is 206Pb so N0=238U+(238U35%)238206.We obtain the latter quantity of 206Pb bymultiplying the present mass of lead-206 by the ratio of the atomic mass of uraniumto that of lead, into which it has decayed. Nt=238U

 Finally NtN0=238U238U+(238U35%)238206=11+35%238206 NtN0=11+35%238206

(v)

\small{\text{If we regard the half-life $t_{1/2}$ for the decay of}}\\  \small{\text{uranium-238 $({}^{238}U)$ to lead-206 $({}^{206}Pb)$ is $\mathbf{4.468\cdot 10^9~ yr }$, }}\\  \small{\text{we can calculate how old the rock is.}}\\  \small{\text{We now have   $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} } } \right)   $  }}\\  \small{\text{or $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} } } \right)   $  }} \\  }}\\  \small{\text{or $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot  \left[ \ln{ (1) } -  \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right)  \right]   $  }} \\  }}\\  \small{\text{Because $\ln{(1)}= 0$  }} \\  \small{\text{$t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot  \left[ 0 -  \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right)  \right]   $  }} \\\\  \small{\text{and finally}}\\\\  \boxed{t = t_{1/2} \cdot \dfrac  { \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) }  { \ln(2) }}

(vi)

\small{\text{We calculate:}}\\  \small{\text{$  \begin{array}{rcl}  t &=&   t_{1/2} \cdot   \dfrac  { \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) }  { \ln(2) }\\  t &=& 4.468\cdot 10^9~ yr \cdot   \dfrac  { \ln{ \left( 1.40436893204} \right) }  { \ln(2) }\\\\  t &=& 4.468\cdot 10^9~ yr \cdot   \dfrac  { 0.33958804319 }  {0.69314718056 }\\\\  t &=& 4.468\cdot 10^9~ yr \cdot 0.48992198586 \\\\  \mathbf{t} &\mathbf{=}& \mathbf{ 2.18897143282\cdot 10^9~ yr }  \end{array}   $}}

 

The rock is 2 188 971 432.82 years old 

 

see SAMPLE EXERCISE 21.7 : http://wps.prenhall.com/wps/media/objects/3313/3392670/blb2104.html 

 

29.07.2015