Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1985
5
avatar

Find The age for a rock for which you determine that 65% as the original uranium – 238 remainswhile the other 35% has decayed into lead

 Jul 29, 2015

Best Answer 

 #2
avatar+26396 
+8

Find The age for a rock for which you determine that 65% as the original uranium – 238 remainswhile the other 35% has decayed into lead

 

I assume: uranium-lead decay route 238U to 206Pb

 

(i)

\boxed{~N_t = N_0\cdot e^{-k\cdot t} ~~(1)~} \quad \small{\text{k, is called the decay constant.}}\\ \small{\text{$N_0$ is the initial number of nuclei (at time zero), and}} \\ \small{\text{$N_t$ is the number remaining after the time interval.}} \\ \small{\text{We can also write our equation:~}} \boxed{~\ln{ \left( \dfrac{N_t}{N_0} } \right) = -k\cdot t ~~(2)~}

(ii)

Relationship between the decay constant, k, and half-life, t1/2.We set Nt1/2=N02 in (1)~so we have N02=N0ekt1/2 and get  k=ln(2)t1/2  (3) 

(iii)

\small{\text{We get t, if we rearrange (2). We have~~}} \boxed{~ t = -\dfrac{1}{k} \cdot\ln{ \left( \dfrac{N_t}{N_0} } \right)~~(4)~}\\ \small{\text{We set k in (3) into (4). We have~~}} \boxed{~ t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{N_t}{N_0} } \right)~~(5)~}\\

(iv)

N0=238U+206Pb238206. And we have 35% of 238U is 206Pb so N0=238U+(238U35%)238206.We obtain the latter quantity of 206Pb bymultiplying the present mass of lead-206 by the ratio of the atomic mass of uraniumto that of lead, into which it has decayed. Nt=238U

 Finally NtN0=238U238U+(238U35%)238206=11+35%238206 NtN0=11+35%238206

(v)

\small{\text{If we regard the half-life $t_{1/2}$ for the decay of}}\\ \small{\text{uranium-238 $({}^{238}U)$ to lead-206 $({}^{206}Pb)$ is $\mathbf{4.468\cdot 10^9~ yr }$, }}\\ \small{\text{we can calculate how old the rock is.}}\\ \small{\text{We now have  $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} } } \right)  $ }}\\ \small{\text{or $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} } } \right)  $ }} \\ }}\\ \small{\text{or $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot \left[ \ln{ (1) } - \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) \right]  $ }} \\ }}\\ \small{\text{Because $\ln{(1)}= 0$ }} \\ \small{\text{$t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot \left[ 0 - \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) \right]  $ }} \\\\ \small{\text{and finally}}\\\\ \boxed{t = t_{1/2} \cdot \dfrac { \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) } { \ln(2) }}

(vi)

\small{\text{We calculate:}}\\ \small{\text{$ \begin{array}{rcl} t &=&  t_{1/2} \cdot  \dfrac { \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) } { \ln(2) }\\ t &=& 4.468\cdot 10^9~ yr \cdot  \dfrac { \ln{ \left( 1.40436893204} \right) } { \ln(2) }\\\\ t &=& 4.468\cdot 10^9~ yr \cdot  \dfrac { 0.33958804319 } {0.69314718056 }\\\\ t &=& 4.468\cdot 10^9~ yr \cdot 0.48992198586 \\\\ \mathbf{t} &\mathbf{=}& \mathbf{ 2.18897143282\cdot 10^9~ yr } \end{array}  $}}

 

The rock is 2 188 971 432.82 years old 

 

see SAMPLE EXERCISE 21.7 : http://wps.prenhall.com/wps/media/objects/3313/3392670/blb2104.html 

 

 Jul 29, 2015
 #1
avatar+33654 
+5

The radioactive decay equation is N/N0 = e-ln(2)*t/τ, where N/N0 is the fraction at time t, and τ is the half-life. If we want to find t, we can take logs of both sides and rearrange to get:  t = -ln(N/N0)*τ/ln(2)

 

U238 has τ = 4.468*109 years, so here we have 

 

t=ln(0.65)×4.468×109ln(2)t=2776810067.3023351976093488

 

or t ≈ 2776810067 years.

.

 Jul 29, 2015
 #2
avatar+26396 
+8
Best Answer

Find The age for a rock for which you determine that 65% as the original uranium – 238 remainswhile the other 35% has decayed into lead

 

I assume: uranium-lead decay route 238U to 206Pb

 

(i)

\boxed{~N_t = N_0\cdot e^{-k\cdot t} ~~(1)~} \quad \small{\text{k, is called the decay constant.}}\\ \small{\text{$N_0$ is the initial number of nuclei (at time zero), and}} \\ \small{\text{$N_t$ is the number remaining after the time interval.}} \\ \small{\text{We can also write our equation:~}} \boxed{~\ln{ \left( \dfrac{N_t}{N_0} } \right) = -k\cdot t ~~(2)~}

(ii)

Relationship between the decay constant, k, and half-life, t1/2.We set Nt1/2=N02 in (1)~so we have N02=N0ekt1/2 and get  k=ln(2)t1/2  (3) 

(iii)

\small{\text{We get t, if we rearrange (2). We have~~}} \boxed{~ t = -\dfrac{1}{k} \cdot\ln{ \left( \dfrac{N_t}{N_0} } \right)~~(4)~}\\ \small{\text{We set k in (3) into (4). We have~~}} \boxed{~ t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{N_t}{N_0} } \right)~~(5)~}\\

(iv)

N0=238U+206Pb238206. And we have 35% of 238U is 206Pb so N0=238U+(238U35%)238206.We obtain the latter quantity of 206Pb bymultiplying the present mass of lead-206 by the ratio of the atomic mass of uraniumto that of lead, into which it has decayed. Nt=238U

 Finally NtN0=238U238U+(238U35%)238206=11+35%238206 NtN0=11+35%238206

(v)

\small{\text{If we regard the half-life $t_{1/2}$ for the decay of}}\\ \small{\text{uranium-238 $({}^{238}U)$ to lead-206 $({}^{206}Pb)$ is $\mathbf{4.468\cdot 10^9~ yr }$, }}\\ \small{\text{we can calculate how old the rock is.}}\\ \small{\text{We now have  $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} } } \right)  $ }}\\ \small{\text{or $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} } } \right)  $ }} \\ }}\\ \small{\text{or $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot \left[ \ln{ (1) } - \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) \right]  $ }} \\ }}\\ \small{\text{Because $\ln{(1)}= 0$ }} \\ \small{\text{$t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot \left[ 0 - \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) \right]  $ }} \\\\ \small{\text{and finally}}\\\\ \boxed{t = t_{1/2} \cdot \dfrac { \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) } { \ln(2) }}

(vi)

\small{\text{We calculate:}}\\ \small{\text{$ \begin{array}{rcl} t &=&  t_{1/2} \cdot  \dfrac { \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) } { \ln(2) }\\ t &=& 4.468\cdot 10^9~ yr \cdot  \dfrac { \ln{ \left( 1.40436893204} \right) } { \ln(2) }\\\\ t &=& 4.468\cdot 10^9~ yr \cdot  \dfrac { 0.33958804319 } {0.69314718056 }\\\\ t &=& 4.468\cdot 10^9~ yr \cdot 0.48992198586 \\\\ \mathbf{t} &\mathbf{=}& \mathbf{ 2.18897143282\cdot 10^9~ yr } \end{array}  $}}

 

The rock is 2 188 971 432.82 years old 

 

see SAMPLE EXERCISE 21.7 : http://wps.prenhall.com/wps/media/objects/3313/3392670/blb2104.html 

 

heureka Jul 29, 2015
 #3
avatar+118703 
0

Two great answers, thanks Alan and Heureka  

 Jul 29, 2015
 #4
avatar+33654 
+5

I think heureka has been misled (in his section (iii)) by the example at : http://wps.prenhall.com/wps/media/objects/3313/3392670/blb2104.html 

 

We are told directly here that Nt/N0 = 0.65, so that's all we need.

 

If the mass of Uranium now is Nt and the original mass was N0 then heureka's formula for original mass should just be:

N0 = Nt + 0.35*N0   which results in N0 = Nt/(1-0.35), so Nt/N0 = (1-0.35) = 0.65.

We don't need the relative atomic masses of U238 and lead206 (we would do if we had the actual masses of U238 and Pb206 now).

 

heureka's expression for Nt/N0 gives a ratio of just over 71%

.

 Jul 29, 2015
 #5
avatar+118703 
0

You are probably right Alan but you have to admit, Heureka's answer LOOKED very impressive.   LOL

 

Heureka's answers are always impressive   

 Jul 29, 2015

0 Online Users