Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #4
avatar+26397 
+13

 d. What is the largest positive integer n such that 1754, 1457 and 368  all leave the same remainder r when divided by n

 

I.

\small{\text{  In a. we habe the difference $1754-1457 = 297 $   }} \\   \small{\text{  In b. we habe the difference $1754-368= 1386 $   }} \\  \small{\text{  In c. we habe the difference $1457 -368= 1089 $   }} \\  \begin{array}{lrcl}   \end{array}   }}

 

II.

 The prime factorisation all differences: (1)297=3311(2)1386=232711(3)1089=32112

 

III.

 The greatest n is the greatest common divider of the differences: (1)297=33211(2)1386=273211(3)1089=113211  n=gcd(297,1386,1089)=99  

 

IV.

 The greatest n is 3211=99. The same remainder is 71 : (1)175471(mod99)(2)145771(mod99)(3)36871(mod99)

 

15.07.2015
 #1
avatar+26397 
+8

 Several congruences are listed below and labeled with powers of 2.  Some of the congruences are true and some are false.  Find the sum of the labels for the congruences that are true. 

 

(1)11825(mod13)118(mod13)125(mod13)12false(2)2401147(mod49)2401(mod49)0147(mod49)0true(4)183291(mod6)183(mod6)3291(mod6)3true(8)270114393(mod8)2701(mod8)514393(mod8)1false(16)493873(mod10)493(mod10)3873(mod10)3true(32)4113396(mod9)4113(mod9)0396(mod9)0true

sum of the labels for the conguences that are true: (2)+(4)+(16)+(32) = 54

 

14.07.2015