d. What is the largest positive integer n such that 1754, 1457 and 368 all leave the same remainder r when divided by n?
I.
\small{\text{ In a. we habe the difference $1754-1457 = 297 $ }} \\ \small{\text{ In b. we habe the difference $1754-368= 1386 $ }} \\ \small{\text{ In c. we habe the difference $1457 -368= 1089 $ }} \\ \begin{array}{lrcl} \end{array} }}
II.
The prime factorisation all differences: (1)297=33⋅11(2)1386=2⋅32⋅7⋅11(3)1089=32⋅112
III.
The greatest n is the greatest common divider of the differences: (1)297=3⋅32⋅11(2)1386=2⋅7⋅32⋅11(3)1089=11⋅32⋅11 n=gcd(297,1386,1089)=99
IV.
The greatest n is 32⋅11=99. The same remainder is 71 : (1)1754≡71(mod99)(2)1457≡71(mod99)(3)368≡71(mod99)
