a. What is the largest positive integer $n$ such that 1457 and 1754 leave the same remainder when divided by $n$?
b. What is the largest positive integer $n$ such that $1457$ and $368$ leave the same remainder when divided by $n$?
c. What is the largest positive integer $n$ such that $1754$ and $368$ leave the same remainder when divided by $n$?
d. What is the largest positive integer $n$ such that $1457$, $1754$, and $368$ all leave the same remainder when divided by $n$?
a. What is the largest positive integer n such that 1457 and 1754 leave the same remainder r when divided by n?
(1)1754≡r(modn)(2)1457≡r(modn)(1)1754−r=a⋅na∈Z(2)1457−r=b⋅nb∈Zb≠a(1)r=1754−a⋅n(2)r=1457−b⋅n(1)=(2)1754−a⋅n=1457−b⋅n297=n⋅(a−b)|n is max, when (a−b)=1n=297(1)1754≡269(mod297)(2)1457≡269(mod297)
a. What is the largest positive integer n such that 1457 and 1754 leave the same remainder r when divided by n?
(1)1754≡r(modn)(2)1457≡r(modn)(1)1754−r=a⋅na∈Z(2)1457−r=b⋅nb∈Zb≠a(1)r=1754−a⋅n(2)r=1457−b⋅n(1)=(2)1754−a⋅n=1457−b⋅n297=n⋅(a−b)|n is max, when (a−b)=1n=297(1)1754≡269(mod297)(2)1457≡269(mod297)
b. What is the largest positive integer n such that 1457 and 368 leave the same remainder r when divided by n?
(1)1457≡r(modn)(2)368≡r(modn)(1)1457−r=b⋅nb∈Z(2)368−r=c⋅nc∈Zc≠b(1)r=1457−b⋅n(2)r=368−c⋅n(1)=(2)1457−b⋅n=368−c⋅n1089=n⋅(b−c)|n is max, when (b−c)=1n=1089(1)1457≡368(mod1089)(2)368≡368(mod1089)
c. What is the largest positive integer n such that 1754 and 368 leave the same remainder r when divided by n?
(1)1754≡r(modn)(2)368≡r(modn)(1)1754−r=a⋅na∈Z(2)368−r=c⋅nc∈Zc≠a(1)r=1754−a⋅n(2)r=368−c⋅n(1)=(2)1754−a⋅n=368−c⋅n1386=n⋅(a−c)|n is max, when (a−c)=1n=1386(1)1754≡368(mod1386)(2)368≡368(mod1386)
d. What is the largest positive integer n such that 1754, 1457 and 368 all leave the same remainder r when divided by n?
I.
\small{\text{ In a. we habe the difference $1754-1457 = 297 $ }} \\ \small{\text{ In b. we habe the difference $1754-368= 1386 $ }} \\ \small{\text{ In c. we habe the difference $1457 -368= 1089 $ }} \\ \begin{array}{lrcl} \end{array} }}
II.
The prime factorisation all differences: (1)297=33⋅11(2)1386=2⋅32⋅7⋅11(3)1089=32⋅112
III.
The greatest n is the greatest common divider of the differences: (1)297=3⋅32⋅11(2)1386=2⋅7⋅32⋅11(3)1089=11⋅32⋅11 n=gcd(297,1386,1089)=99
IV.
The greatest n is 32⋅11=99. The same remainder is 71 : (1)1754≡71(mod99)(2)1457≡71(mod99)(3)368≡71(mod99)