Loading [MathJax]/jax/output/SVG/jax.js
 

hectictar

avatar
Benutzernamehectictar
Punkte9488
Membership
Stats
Fragen 10
Antworten 3005

 #2
avatar+9488 
+5

Here's equilateral triangle ABC and a circle with radius 1 centered on point A:

 

 

The intersecion of the triangle and the circle is the highlighted sector.

 

probability that a randomly chosen point lands in highlighted sector  =  area of sector / area of triangle

 

So we just have to find the area of the sector and the area of the triangle.

 

 

Let's find the area of the sector:

 

area of sectorarea of circle = measure of central angle360 area of sectorπ12 = 60360 area of sector = 60360π12 area of sector = π6

 

 

Now let's find the area of the triangle:

 

area of triangle = 12baseheight area of triangle = 123332 area of triangle = 934

 

 

Now we can find the probability in question.

 

probability=area of sectorarea of triangle probability=area of sector÷area of triangle probability=π6÷934 probability=π6493 probability=4π543 probability=43π162 probability=23π81_

24.07.2019
 #1
avatar+9488 
+5

(4a)3 = 32

                                         Take the cube root of both sides of the equation.

3(4a)3 = 332

                                         Simplify the left side with the rule  3n3 = n

4a = 332

                                                    We can rewrite  32  like this because  32 = 2 * 2 * 2 * 2 * 2

4a = 322222

                                                    We can rewrite the right side again like this...

4a = 3222322

                                                    And   2 * 2 * 2  =  23   and   2 * 2  =  4

4a = 32334

                                                    Simplify  323  again with the rule  3n3 = n

4a = 234

 

4a = 234

                               Add  a  to both sides of the equation.

4 = 234+a

                               Subtract  234  from both sides of the equation.

4234 = a

 

a = 4234-

24.07.2019
 #2
avatar+9488 
+5

Until this gets fixed, you should be able to use another service to upload your image.

 

Here Melody explains how to use one called Gyazo: https://web2.0calc.com/questions/how-to-upload-a-picture_1

 

I use a website called Imgur to upload images: https://imgur.com/upload

To use that, browse your files to choose the image or drag it onto the screen. Wait for the image to finish uploading, then right click the picture and select "Copy Image Address/Location/URL" (The message is different depending on what browser you're using.) Once you have copied the image's URL, back on this forum, paste it into the box where it says URL after you click the Image button.

 

If neither of those work, you can try searching Google for "image upload" or something like that to find another one. 

23.07.2019