Loading [MathJax]/jax/output/SVG/jax.js
 

hectictar

avatar
Benutzernamehectictar
Punkte9488
Membership
Stats
Fragen 10
Antworten 3005

 #1
avatar+9488 
+5

 

By the SAS congruence theorem,  △PQT ≅ △SRT  So...

 

m∠QPT  =  m∠RST  =  37°

 

m∠QTP  =  180° - 50°   =   130°

 

m∠PQT  =  180° - 37° - 130°  =  13°

 

Since  QT = RT  we can substitute  QT  in for  RT in the next equation.


RT+TP = 11 QT+TP = 11 QT = 11TP

 

Now we can substitute  11 - TP  in for  QT in the next equation.

 

By the Law of Sines,

 

TPsin13 = QTsin37 TPsin37sin13 = QT TPsin37sin13 = 11TP TPsin37sin13+TP = 11 TP(sin37sin13+1) = 11 TP = 11÷(sin37sin13+1) TP = 11sin13sin37+sin13

 

Now that we know the length of  TP ,  we can find the length of  QT.

 

QT = 11TP QT = 1111sin13sin37+sin13

 

Finally, we can use the Law of Sines again to find  QP.

 

QPsin130 = TPsin13 QP = TPsin130sin13 QP = 11sin13sin37+sin13sin130sin13 QP = 11sin130sin37+sin13

 

So we have found:

 

TP=11sin13sin37+sin132.993 QT=1111sin13sin37+sin138.007 QP=11sin130sin37+sin1310.192

 

And all lengths are in meters.

20.07.2019
 #1
avatar+9488 
+5

a + ab2   =   40b

a - ab2   =   -32b

 

The purple values are equal to each other and the blue values are equal to each other.

 

a - ab2   =   -32b                     Add  40b  to both sides of the equation.

 

a - ab2 + 40b   =   -32b + 40b        Since  a + ab2  =  40b   we can substitute  a + ab2  in for  40b

 

a - ab2 + a + ab2   =   -32b + 40b      The elimination method is really just like substitution  smiley

 

a - ab2 + a + ab2   =   -32b + 40b      Simplify both sides by combining like terms.

 

2a   =   8b          Divide both sides of the equation by  8

 

14a  =  b

 

Now we can substitute this value for  b  into one of the original equations.

 

a + ab2  =  40b

                                    Substitute   14a   in for   b

a + a(14a)2  =  40(14a)

                                    Simplify both sides of the equation.

a + 116a3   =   10a

                                    Multiply through by  16

16a + a3  =  160a

                                    Subtract  16a  from both sides and subtract  a3  from both sides

0  =  144a - a3

                                    Factor  a  out of both terms on the right side

0  =  a( 144 - a2 )

                                           Factor   144 - a2   as a difference of squares

0  =  a( 12 - a )( 12 + a )

                                           Set each factor equal to  0  and solve for  a

0  =  a ___ or ___ 12 - a  =  0 ___ or ___ 12 + a  =  0

 

 

a  =  0   a  =  12   a  =  -12  
19.07.2019
 #4
avatar+9488 
+5

Out of curiosity, I wanted to see a length comparison between your answer and my answer:

 

 

cot(arctan(cos(arctan(cot(arctan(cot(arctan(cos(arctan(cot(arctan(cot(arctan(cos(arctan(cot(arctan(cos(arctan(cot(arctan(cos(arctan(cos(0)))))))))))))))))))))))))

 

25 total basic functions

 

Here is WolframAlpha's result: https://www.wolframalpha.com/input/?i=cot(arctan(. . .

 

 

versus

 

 

cot(arctan(cos(arctan(cos(arctan(cos(arcsin(cos(arctan(cos(arcsin(cos(arctan(cos(arctan(cos(0)))))))))))))))))

 

17  total basic functions

 

Here is WolframAlpha's result: https://www.wolframalpha.com/input/?i=cot(arctan(. . .

.

smiley

 

.

17.07.2019