hectictar

avatar
Benutzernamehectictar
Punkte9479
Membership
Stats
Fragen 10
Antworten 3005

 #1
avatar+9479 
+3

Let  a,  b,  c,  and  d  be real numbers such that  a > b  and  c > d .

\(\text{__________________________________________________________________________________}\)

 

(A)     a + c  >  b + d

 

We know.....

 

a  >  b_____and_____c  >  d

 

Add  d  to both sides of the first inequality.

 

a + d  >  b + d

 

If we substitute  c  for  d  on the left side it will make the left side bigger,

and the inequality will still be true. So it is always true that

 

a + c  >  b + d

\(\text{__________________________________________________________________________________}\)

 

(B)     2a + 3c  >  2b + 3d

 

a  >  b _____and_____ c  >  d
2a  >  2b and 3c  >  3d

 

By the same logic from part (A), we can conclude that it is also true that     2a + 3c  >  2b + 3d

\(\text{__________________________________________________________________________________}\)

 

(C)     a - c  >  b - d


Counterexample:     Let   a = 2 ,  b = 1 ,  c = 2 ,  d = 1

 

a  >  b    and    c  >  d    but it is not true that    a - c  >  b - d    because    2 - 2  >  1 - 1    is not true.

\(\text{__________________________________________________________________________________}\)

 

(D)     ac  >  bd

 

Counterexample:     Let   a = 5 ,  b = 1 ,  c = -1 ,  d = -2

 

a  >  b    and    c  >  d    but it is not true that    ac  >  bd    because    (5)(-1)  >  (1)(-2)    is not true.

\(\text{__________________________________________________________________________________}\)

 

(E)     a2 + c2  >  b2 + d2

 

Counterexample:     Let   a = 2 ,  b = -5 ,  c = 2 ,  d = 1

 

a  >  b    and    c  >  d    but it is not true that    a2 + c2  >  b2 + d2    because    22 + 22  >  (-5)2 + 12    is not true.

\(\text{__________________________________________________________________________________}\)

 

(F)     a3 + c3  >  b3 + d3

 

If     a  >  b     then     | a3 |  >  | b3 |     and     a3  >  b3

 

If     c  >  d     then     | c3 |  >  | d3 |     and     c3  >  d3

 

By the same logic from part  (A) , we can conclude that it is also true that     a3 + c3  >  b3 + d3

20.05.2019
 #1
avatar+9479 
+3

The scale drawing of a rectangular yard measures (2x2 + 2) by (x + 4). If the area of the scale drawing and the

area of the actual yard are in the ratio 12:140, find an expression for the area of the actual yard in expanded form.

 

----------

 

area of scale drawing  =  ( length )( width )  =  (2x2 + 2)(x + 4)

 

area of scale drawing / area of actual yard  =  12 / 140

                                                                                        Substitute  (2x2 + 2)(x + 4)  for  area of scale drawing

(2x2 + 2)(x + 4) / area of actual yard  =  12 / 140            Now we just have to solve for  area of actual yard

                                                                                        Cross multiply

(140)(2x2 + 2)(x + 4)  =  12(area of actual yard)

                                                                                        Divide both sides of the equation by  12

(140)(2x2 + 2)(x + 4) / 12  =  area of actual yard

 

area of actual yard  =  (140)(2x2 + 2)(x + 4) / 12

                                                                                        Expand the right side of the equation

area of actual yard  =  (140)(2x3 + 8x2 + 2x + 8) / 12

 

area of actual yard  =  (280x3 + 1120x2 + 280x + 1120) / 12

                                                                                                 Divide the numerator and denominator by  4

area of actual yard  =  (70x3 + 280x2 + 70x + 280) / 3

18.05.2019