Processing math: 100%
 
+0  
 
0
641
1
avatar

For a real number x, find the minimum value of x42x2.

 May 20, 2019

Best Answer 

 #1
avatar+9488 
+3

Let    y   =   x4  -  2x2

 

y=x42x2 dydx=ddxx4ddx2x2 dydx=4x34x

 

Now let's find what values of  x  make  dydx  be  0

 

0=4x34x 0=4x(x21)

 

Set each factor equal to zero and solve for  x

 

4x=0orx21=0 x=0orx2=1 x=1orx=1

 

These are the  x  values of all the critical points.

 

We can look at a graph to determine which is the minimum:

https://www.desmos.com/calculator/vvl7egtes1

 

We can see that the minumum occurs when  x  =  1  and when  x  =  -1

 

When  x  =  ±1 ,    x2  =  1

 

And when  x2  =  1 ,

 

y   =   x4  -  2x2   =   (x2)2  -  2x2   =   (1)2 - 2(1)   =   -1

 

So the minumum value of  y  is  -1

 May 20, 2019
 #1
avatar+9488 
+3
Best Answer

Let    y   =   x4  -  2x2

 

y=x42x2 dydx=ddxx4ddx2x2 dydx=4x34x

 

Now let's find what values of  x  make  dydx  be  0

 

0=4x34x 0=4x(x21)

 

Set each factor equal to zero and solve for  x

 

4x=0orx21=0 x=0orx2=1 x=1orx=1

 

These are the  x  values of all the critical points.

 

We can look at a graph to determine which is the minimum:

https://www.desmos.com/calculator/vvl7egtes1

 

We can see that the minumum occurs when  x  =  1  and when  x  =  -1

 

When  x  =  ±1 ,    x2  =  1

 

And when  x2  =  1 ,

 

y   =   x4  -  2x2   =   (x2)2  -  2x2   =   (1)2 - 2(1)   =   -1

 

So the minumum value of  y  is  -1

hectictar May 20, 2019

2 Online Users

avatar