Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
+2

Solve z3=8i in complex numbers.


z3=8i|cube root both sidesz=38iz=383iz=23i

 

i=eiπ23i=i13=(ei(π2+2πk))133i=ei(π6+2πk3)

 

k=0:3i=eiπ6=cos(30)+isin(30)k=1:3i=ei(π6+2π3)=cos(150)+isin(150)k=2:3i=ei(π6+4π3)=cos(270)+isin(270)

 

z=23iz1=2(cos(30)+isin(30))z1=3+iz2=2(cos(150)+isin(150))z2=3+iz3=2(cos(270)+isin(270))z3=2i

 

laugh

19.06.2021
 #2
avatar+26396 
+1

Solve
xy+x+y=23yz+y+z=31zx+z+x=47
in real numbers.

 

xy+x+y=23(x+1)(y+1)1=23(x+1)(y+1)=24(1)yz+y+z=31(y+1)(z+1)1=31(y+1)(z+1)=32(2)zx+z+x=47(z+1)(x+1)1=47(z+1)(x+1)=48(3)

 

Let a=x+1, b=y+1, c=z+1

 

ab=24(4)bc=32(5)ca=48(6)

 

(4)(6)(5):abcabc=244832a2=36a=±6x+1=±6x1=5x2=7(x+1)(y+1)=24(±6)(y+1)=246(y1+1)=24y1+1=4y1=3(6)(y2+1)=24y2+1=4y2=5(z+1)(x+1)=48(±6)(z+1)=486(z1+1)=48z1+1=8z1=7(6)(z2+1)=48z2+1=8z2=9

 

laugh

18.06.2021