(a+bi)^3 = 8i
-b^3*i - 3ab^2 + 3ab^2 * i + a^3
a^3 - 3ab^2 = 0
3ab^2 - b^3 = 8
Now I'm stuck.
Good luck, I hope you can figure it out.
Sorry I wasn't able to help more.
=^._.^=
Solve z3=8∗i in complex numbers.
z3=8∗i|cube root both sidesz=3√8iz=3√83√iz=23√i
i=eiπ23√i=i13=(ei(π2+2π∗k))133√i=ei(π6+2π∗k3)
k=0:3√i=eiπ6=cos(30∘)+i∗sin(30∘)k=1:3√i=ei(π6+2π3)=cos(150∘)+i∗sin(150∘)k=2:3√i=ei(π6+4π3)=cos(270∘)+i∗sin(270∘)
z=23√iz1=2∗(cos(30∘)+i∗sin(30∘))z1=√3+iz2=2∗(cos(150∘)+i∗sin(150∘))z2=−√3+iz3=2∗(cos(270∘)+i∗sin(270∘))z3=−2i