If mtan(A-30)=ntan(A+120), then prove that-
2*cos2A=[m+n]/[m-n]
\(\begin{array}{rcll} m\cdot \tan(A-30^{\circ} ) &=& n\cdot \tan(A+120^{\circ}) \\ &=& n\cdot \tan(A+90^{\circ}+ 30^{\circ}) \\ &=& n\cdot \tan[90^{\circ}+( A+30^{\circ}) ] \quad | \quad \tan(90^{\circ}+x) = - \cot(x)\\ &=& -n\cdot \cot( A+30^{\circ}) \\ m\cdot \tan(A-30^{\circ} ) &=& -n\cdot \frac{1}{\tan( A+30^{\circ}) } \\ m\cdot\tan( A+30^{\circ}) \cdot \tan(A-30^{\circ} ) &=& -n \\ \tan( A+30^{\circ}) \cdot \tan(A-30^{\circ} ) &=& -\frac{n}{m} \quad | \quad \boxed{~ q = -\frac{n}{m} ~}\\ \tan( A+30^{\circ}) \cdot \tan(A-30^{\circ} ) &=& q \\ \end{array}\)
\(\begin{array}{rcll} \tan( A+30^{\circ}) \cdot \tan(A-30^{\circ} ) &=& \left( \frac{ \tan(A) +\tan(30^{\circ} ) } { 1-\tan(A)\tan(30^{\circ}) } \right) \cdot \left( \frac{ \tan(A) -\tan(30^{\circ} )} { 1+\tan(A)\tan(30^{\circ}) } \right) \\ &=& \frac{\tan^2(A) -\tan^2(30^{\circ}) } { 1-\tan^2(A)\tan^2(30^{\circ}) } \end{array}\)
\(\boxed{~ \begin{array}{rcll} \frac{\tan^2(A) -\tan^2(30^{\circ}) } { 1-\tan^2(A)\tan^2(30^{\circ}) } &=& q \end{array} ~}\)
\(\begin{array}{rcll} \frac{m+n}{m-n} &=& \frac{2m}{m-n}-1 \\ &=& \frac{ 2 } { \frac{m}{m} - \frac{n}{m} } - 1 \\ &=& \frac{ 2 } { 1 - \frac{n}{m} } - 1 \quad | \quad q = -\frac{n}{m}\\ &=& \frac{ 2 } { 1 +q } - 1 \\ &=& \frac{ 2 - (1+q)} { 1 +q } \\ &=& \frac{ 2 - 1-q} { 1 +q } \\ &=& \frac{ 1-q} { 1 +q } \\ \boxed{~ \frac{m+n}{m-n} = \frac{ 1-q} { 1 +q } ~} \end{array}\)
\(\begin{array}{rcll} \dfrac{m+n}{m-n} &=& \dfrac{ 1-q} { 1 +q } \\\\ &=& \dfrac{ 1-\frac{\tan^2(A) -\tan^2(30^{\circ}) } { 1-\tan^2(A)\tan^2(30^{\circ}) }} { 1 +\frac{\tan^2(A) -\tan^2(30^{\circ}) } { 1-\tan^2(A)\tan^2(30^{\circ}) } } \\\\ &=& \dfrac{ 1-\tan^2(A)\tan^2(30^{\circ}) -\tan^2(A)+ \tan^2(30^{\circ}) } { 1-\tan^2(A)\tan^2(30^{\circ}) +\tan^2(A)- \tan^2(30^{\circ}) } \\\\ \dfrac{m+n}{m-n} &=& \dfrac{ [ 1-\tan^2(A)] [ 1+\tan^2(30^{\circ})] } { [ 1+\tan^2(A)] [ 1-\tan^2(30^{\circ})] } \end{array}\)
\(\begin{array}{rcll} \sin^2(A)+\cos(A)^2 &=& 1 \quad | \quad :\cos^2(A) \\ \frac{\sin^2(A)}{\cos^2(A)} + \frac{\cos^2(A)}{\cos^2(A)} &=& \frac{1}{\cos^2(A)} \\ \boxed{~ \tan^2(A) + 1 = \frac{1}{\cos^2(A)} ~} \end{array}\)
\(\begin{array}{rcll} \cos(A)^2 - \sin^2(A) &=& \cos(2A) \quad | \quad :\cos^2(A) \\ \frac{\cos^2(A)}{\cos^2(A)} - \frac{\sin^2(A)}{\cos^2(A)} &=& \frac{\cos(2A)}{\cos^2(A)} \\ \boxed{~ 1-\tan^2(A) = \frac{\cos(2A)}{\cos^2(A)} ~} \end{array}\)
\(\begin{array}{rcll} \dfrac{m+n}{m-n} &=& \dfrac{ [ 1-\tan^2(A)] [ 1+\tan^2(30^{\circ})] } { [ 1+\tan^2(A)] [ 1-\tan^2(30^{\circ})] } \\\\ \dfrac{m+n}{m-n} &=& \dfrac{ \frac{\cos(2A)}{\cos^2(A)} [ 1+\tan^2(30^{\circ})] } { \frac{1}{\cos^2(A)} [ 1-\tan^2(30^{\circ})] } \\\\ \dfrac{m+n}{m-n} &=& \cos(2A)\cdot \dfrac{ [ 1+\tan^2(30^{\circ})] } { [ 1-\tan^2(30^{\circ})] } \quad |\quad \tan(30^{\circ}) = \frac{1}{ \sqrt{3} } \quad \tan^2(30^{\circ}) = \frac13 \\\\ \dfrac{m+n}{m-n} &=& \cos(2A)\cdot \dfrac{ ( 1+\frac13) } { ( 1-\frac13) } \\\\ \dfrac{m+n}{m-n} &=& \cos(2A)\cdot \dfrac{ \frac43 } { \frac23 } \\\\ \dfrac{m+n}{m-n} &=& \cos(2A)\cdot \frac43 \cdot \frac32 \\\\ \dfrac{m+n}{m-n} &=& \cos(2A)\cdot \frac42 \\\\ \dfrac{m+n}{m-n} &=& \cos(2A)\cdot 2 \\\\ \mathbf{ \dfrac{m+n}{m-n} }& \mathbf{=} & \mathbf{ 2\cdot \cos(2A) } \end{array} \)