Processing math: 100%
 
+0  
 
+5
839
7
avatar+257 

If mtan(A-30)=ntan(A+120), then prove that-2*cos2A=m+n/m-n

 Mar 29, 2016

Best Answer 

 #6
avatar+26397 
+10

If mtan(A-30)=ntan(A+120), then prove that-

2*cos2A=[m+n]/[m-n]

 

mtan(A30)=ntan(A+120)=ntan(A+90+30)=ntan[90+(A+30)]|tan(90+x)=cot(x)=ncot(A+30)mtan(A30)=n1tan(A+30)mtan(A+30)tan(A30)=ntan(A+30)tan(A30)=nm| q=nm tan(A+30)tan(A30)=q

 

tan(A+30)tan(A30)=(tan(A)+tan(30)1tan(A)tan(30))(tan(A)tan(30)1+tan(A)tan(30))=tan2(A)tan2(30)1tan2(A)tan2(30)

 tan2(A)tan2(30)1tan2(A)tan2(30)=q 

 

m+nmn=2mmn1=2mmnm1=21nm1|q=nm=21+q1=2(1+q)1+q=21q1+q=1q1+q m+nmn=1q1+q 

 


m+nmn=1q1+q=1tan2(A)tan2(30)1tan2(A)tan2(30)1+tan2(A)tan2(30)1tan2(A)tan2(30)=1tan2(A)tan2(30)tan2(A)+tan2(30)1tan2(A)tan2(30)+tan2(A)tan2(30)m+nmn=[1tan2(A)][1+tan2(30)][1+tan2(A)][1tan2(30)]

 

sin2(A)+cos(A)2=1|:cos2(A)sin2(A)cos2(A)+cos2(A)cos2(A)=1cos2(A) tan2(A)+1=1cos2(A) 

 

cos(A)2sin2(A)=cos(2A)|:cos2(A)cos2(A)cos2(A)sin2(A)cos2(A)=cos(2A)cos2(A) 1tan2(A)=cos(2A)cos2(A) 

 

m+nmn=[1tan2(A)][1+tan2(30)][1+tan2(A)][1tan2(30)]m+nmn=cos(2A)cos2(A)[1+tan2(30)]1cos2(A)[1tan2(30)]m+nmn=cos(2A)[1+tan2(30)][1tan2(30)]|tan(30)=13tan2(30)=13m+nmn=cos(2A)(1+13)(113)m+nmn=cos(2A)4323m+nmn=cos(2A)4332m+nmn=cos(2A)42m+nmn=cos(2A)2m+nmn=2cos(2A)

 

laugh

 Mar 29, 2016
 #1
avatar+118706 
+10

 

 

If mtan(A-30)=ntan(A+120), then prove that-2*cos2A=m+n/m-n

 

Are there suppose to be more brackets in there?    like this?

If mtan(A-30)=ntan(A+120), then prove that-2*cos2A=[m+n]/[m-n]

 Mar 29, 2016
 #2
avatar+257 
+5

Yes MELODY , you are right.smiley

AaratrikRoy  Mar 29, 2016
 #3
avatar+252 
+5

~Melody

How do you know this?

Songoflight  Mar 29, 2016
 #5
avatar+118706 
+5

Hi Songoflight  :)

It was just a guess, I am used to questions like this.  (although this was a hard one)

Anyway if it was really intended to be    m+n/m-n     it would be more ususal to write it as    m-n+n/m    laugh

Melody  Mar 29, 2016
 #4
avatar+118706 
+10

If mtan(A-30)=ntan(A+120), then prove that-2*cos2A=[m+n]/[m-n]

 

 

mtan(A30)=m(tanAtan30)÷(1+tanAtan30)=m(tanA13)÷(1+tanA3)=m(3tanA13)÷(3+tanA3)=m(3tanA13+tanA)

 

ntan(A+120)=n(tanA+tan120)÷(1tanAtan120)=n(tanAtan60)÷(1+tanAtan60)=n(tanA3)÷(1+3tanA)=n(3tanA)÷(3tanA+1)=n(3tanA)(3tanA+1)

 

 

m(3tanA1)(3+tanA)=n(3tanA)(3tanA+1)m=n(3tanA)(3tanA+1)÷(3tanA1)(3+tanA)m=n(3tanA)(3tanA+1)×(3+tanA)(3tanA1)m=n(3tan2A)(3tan2A1)

 

m+nmn=[n(3tan2A)(3tan2A1)+n]÷[n(3tan2A)(3tan2A1)n]=[n(3tan2A)(3tan2A1)+n(3tan2A1)(3tan2A1)]÷[n(3tan2A)(3tan2A1)n(3tan2A1)(3tan2A1)]=[n(3tan2A)+n(3tan2A1)(3tan2A1)]÷[n(3tan2A)n(3tan2A1)(3tan2A1)]=[n(3tan2A)+n(3tan2A1)]÷[n(3tan2A)n(3tan2A1)]=[(3tan2A)+(3tan2A1)]÷[(3tan2A)(3tan2A1)]=[3+tan2A+3tan2A1]÷[3+tan2A3tan2A+1]=[4+4tan2A]÷[22tan2A]=[2+2tan2A]÷[1tan2A]=2(1tan2A)1+tan2A

 

=2(1sin2Acos2A)÷(1+sin2Acos2A)=2(cos2Asin2Acos2A)÷(cos2A+sin2Acos2A)=2(cos2Asin2A)÷(cos2A+sin2A)=2(cos2Asin2A)÷(1)=2(cos2Asin2A)=2cos2A

 

 

I've lost a negative sign somewhere - oh well, you can find it .....     :))

 Mar 29, 2016
 #7
avatar+118706 
+5

Thanks Heureka, you got the same answer as me.  That must have been a dash and not a minus sign at all :))

Melody  Mar 30, 2016
 #6
avatar+26397 
+10
Best Answer

If mtan(A-30)=ntan(A+120), then prove that-

2*cos2A=[m+n]/[m-n]

 

mtan(A30)=ntan(A+120)=ntan(A+90+30)=ntan[90+(A+30)]|tan(90+x)=cot(x)=ncot(A+30)mtan(A30)=n1tan(A+30)mtan(A+30)tan(A30)=ntan(A+30)tan(A30)=nm| q=nm tan(A+30)tan(A30)=q

 

tan(A+30)tan(A30)=(tan(A)+tan(30)1tan(A)tan(30))(tan(A)tan(30)1+tan(A)tan(30))=tan2(A)tan2(30)1tan2(A)tan2(30)

 tan2(A)tan2(30)1tan2(A)tan2(30)=q 

 

m+nmn=2mmn1=2mmnm1=21nm1|q=nm=21+q1=2(1+q)1+q=21q1+q=1q1+q m+nmn=1q1+q 

 


m+nmn=1q1+q=1tan2(A)tan2(30)1tan2(A)tan2(30)1+tan2(A)tan2(30)1tan2(A)tan2(30)=1tan2(A)tan2(30)tan2(A)+tan2(30)1tan2(A)tan2(30)+tan2(A)tan2(30)m+nmn=[1tan2(A)][1+tan2(30)][1+tan2(A)][1tan2(30)]

 

sin2(A)+cos(A)2=1|:cos2(A)sin2(A)cos2(A)+cos2(A)cos2(A)=1cos2(A) tan2(A)+1=1cos2(A) 

 

cos(A)2sin2(A)=cos(2A)|:cos2(A)cos2(A)cos2(A)sin2(A)cos2(A)=cos(2A)cos2(A) 1tan2(A)=cos(2A)cos2(A) 

 

m+nmn=[1tan2(A)][1+tan2(30)][1+tan2(A)][1tan2(30)]m+nmn=cos(2A)cos2(A)[1+tan2(30)]1cos2(A)[1tan2(30)]m+nmn=cos(2A)[1+tan2(30)][1tan2(30)]|tan(30)=13tan2(30)=13m+nmn=cos(2A)(1+13)(113)m+nmn=cos(2A)4323m+nmn=cos(2A)4332m+nmn=cos(2A)42m+nmn=cos(2A)2m+nmn=2cos(2A)

 

laugh

heureka Mar 29, 2016

2 Online Users

avatar