If mtan(A-30)=ntan(A+120), then prove that-
2*cos2A=[m+n]/[m-n]
m⋅tan(A−30∘)=n⋅tan(A+120∘)=n⋅tan(A+90∘+30∘)=n⋅tan[90∘+(A+30∘)]|tan(90∘+x)=−cot(x)=−n⋅cot(A+30∘)m⋅tan(A−30∘)=−n⋅1tan(A+30∘)m⋅tan(A+30∘)⋅tan(A−30∘)=−ntan(A+30∘)⋅tan(A−30∘)=−nm| q=−nm tan(A+30∘)⋅tan(A−30∘)=q
tan(A+30∘)⋅tan(A−30∘)=(tan(A)+tan(30∘)1−tan(A)tan(30∘))⋅(tan(A)−tan(30∘)1+tan(A)tan(30∘))=tan2(A)−tan2(30∘)1−tan2(A)tan2(30∘)
tan2(A)−tan2(30∘)1−tan2(A)tan2(30∘)=q
m+nm−n=2mm−n−1=2mm−nm−1=21−nm−1|q=−nm=21+q−1=2−(1+q)1+q=2−1−q1+q=1−q1+q m+nm−n=1−q1+q
m+nm−n=1−q1+q=1−tan2(A)−tan2(30∘)1−tan2(A)tan2(30∘)1+tan2(A)−tan2(30∘)1−tan2(A)tan2(30∘)=1−tan2(A)tan2(30∘)−tan2(A)+tan2(30∘)1−tan2(A)tan2(30∘)+tan2(A)−tan2(30∘)m+nm−n=[1−tan2(A)][1+tan2(30∘)][1+tan2(A)][1−tan2(30∘)]
sin2(A)+cos(A)2=1|:cos2(A)sin2(A)cos2(A)+cos2(A)cos2(A)=1cos2(A) tan2(A)+1=1cos2(A)
cos(A)2−sin2(A)=cos(2A)|:cos2(A)cos2(A)cos2(A)−sin2(A)cos2(A)=cos(2A)cos2(A) 1−tan2(A)=cos(2A)cos2(A)
m+nm−n=[1−tan2(A)][1+tan2(30∘)][1+tan2(A)][1−tan2(30∘)]m+nm−n=cos(2A)cos2(A)[1+tan2(30∘)]1cos2(A)[1−tan2(30∘)]m+nm−n=cos(2A)⋅[1+tan2(30∘)][1−tan2(30∘)]|tan(30∘)=1√3tan2(30∘)=13m+nm−n=cos(2A)⋅(1+13)(1−13)m+nm−n=cos(2A)⋅4323m+nm−n=cos(2A)⋅43⋅32m+nm−n=cos(2A)⋅42m+nm−n=cos(2A)⋅2m+nm−n=2⋅cos(2A)
If mtan(A-30)=ntan(A+120), then prove that-2*cos2A=m+n/m-n
Are there suppose to be more brackets in there? like this?
If mtan(A-30)=ntan(A+120), then prove that-2*cos2A=[m+n]/[m-n]
If mtan(A-30)=ntan(A+120), then prove that-2*cos2A=[m+n]/[m-n]
m∗tan(A−30)=m∗(tanA−tan30)÷(1+tanAtan30)=m∗(tanA−1√3)÷(1+tanA√3)=m∗(√3tanA−1√3)÷(√3+tanA√3)=m∗(√3tanA−1√3+tanA)
ntan(A+120)=n∗(tanA+tan120)÷(1−tanAtan120)=n∗(tanA−tan60)÷(1+tanAtan60)=n∗(tanA−√3)÷(1+√3tanA)=−n∗(√3−tanA)÷(√3tanA+1)=−n∗(√3−tanA)(√3tanA+1)
m∗(√3tanA−1)(√3+tanA)=−n∗(√3−tanA)(√3tanA+1)m=−n∗(√3−tanA)(√3tanA+1)÷(√3tanA−1)(√3+tanA)m=−n∗(√3−tanA)(√3tanA+1)×(√3+tanA)(√3tanA−1)m=−n∗(3−tan2A)(3tan2A−1)
m+nm−n=[−n(3−tan2A)(3tan2A−1)+n]÷[−n(3−tan2A)(3tan2A−1)−n]=[−n(3−tan2A)(3tan2A−1)+n(3tan2A−1)(3tan2A−1)]÷[−n(3−tan2A)(3tan2A−1)−n(3tan2A−1)(3tan2A−1)]=[−n(3−tan2A)+n(3tan2A−1)(3tan2A−1)]÷[−n(3−tan2A)−n(3tan2A−1)(3tan2A−1)]=[−n(3−tan2A)+n(3tan2A−1)]÷[−n(3−tan2A)−n(3tan2A−1)]=[−(3−tan2A)+(3tan2A−1)]÷[−(3−tan2A)−(3tan2A−1)]=[−3+tan2A+3tan2A−1]÷[−3+tan2A−3tan2A+1]=[−4+4tan2A]÷[−2−2tan2A]=[−2+2tan2A]÷[−1−tan2A]=2(1−tan2A)1+tan2A
=2(1−sin2Acos2A)÷(1+sin2Acos2A)=2(cos2A−sin2Acos2A)÷(cos2A+sin2Acos2A)=2(cos2A−sin2A)÷(cos2A+sin2A)=2(cos2A−sin2A)÷(1)=2(cos2A−sin2A)=2cos2A
I've lost a negative sign somewhere - oh well, you can find it ..... :))
If mtan(A-30)=ntan(A+120), then prove that-
2*cos2A=[m+n]/[m-n]
m⋅tan(A−30∘)=n⋅tan(A+120∘)=n⋅tan(A+90∘+30∘)=n⋅tan[90∘+(A+30∘)]|tan(90∘+x)=−cot(x)=−n⋅cot(A+30∘)m⋅tan(A−30∘)=−n⋅1tan(A+30∘)m⋅tan(A+30∘)⋅tan(A−30∘)=−ntan(A+30∘)⋅tan(A−30∘)=−nm| q=−nm tan(A+30∘)⋅tan(A−30∘)=q
tan(A+30∘)⋅tan(A−30∘)=(tan(A)+tan(30∘)1−tan(A)tan(30∘))⋅(tan(A)−tan(30∘)1+tan(A)tan(30∘))=tan2(A)−tan2(30∘)1−tan2(A)tan2(30∘)
tan2(A)−tan2(30∘)1−tan2(A)tan2(30∘)=q
m+nm−n=2mm−n−1=2mm−nm−1=21−nm−1|q=−nm=21+q−1=2−(1+q)1+q=2−1−q1+q=1−q1+q m+nm−n=1−q1+q
m+nm−n=1−q1+q=1−tan2(A)−tan2(30∘)1−tan2(A)tan2(30∘)1+tan2(A)−tan2(30∘)1−tan2(A)tan2(30∘)=1−tan2(A)tan2(30∘)−tan2(A)+tan2(30∘)1−tan2(A)tan2(30∘)+tan2(A)−tan2(30∘)m+nm−n=[1−tan2(A)][1+tan2(30∘)][1+tan2(A)][1−tan2(30∘)]
sin2(A)+cos(A)2=1|:cos2(A)sin2(A)cos2(A)+cos2(A)cos2(A)=1cos2(A) tan2(A)+1=1cos2(A)
cos(A)2−sin2(A)=cos(2A)|:cos2(A)cos2(A)cos2(A)−sin2(A)cos2(A)=cos(2A)cos2(A) 1−tan2(A)=cos(2A)cos2(A)
m+nm−n=[1−tan2(A)][1+tan2(30∘)][1+tan2(A)][1−tan2(30∘)]m+nm−n=cos(2A)cos2(A)[1+tan2(30∘)]1cos2(A)[1−tan2(30∘)]m+nm−n=cos(2A)⋅[1+tan2(30∘)][1−tan2(30∘)]|tan(30∘)=1√3tan2(30∘)=13m+nm−n=cos(2A)⋅(1+13)(1−13)m+nm−n=cos(2A)⋅4323m+nm−n=cos(2A)⋅43⋅32m+nm−n=cos(2A)⋅42m+nm−n=cos(2A)⋅2m+nm−n=2⋅cos(2A)