Loading [MathJax]/jax/output/SVG/jax.js
 

hectictar

avatar
Benutzernamehectictar
Punkte9488
Membership
Stats
Fragen 10
Antworten 3005

 #2
avatar+9488 
+1

7(2a)2+(1)24a211+4a2+3=2

 

 

Multiply both sides of the equation by   1+4a2+3   and note that  1+4a2+30 1+4a23

But there isn't a value of  a  that makes that true.

 

7(2a)2+(1)24a21=2(1+4a2+3) 74a2+14a21=21+4a2+6 74a2+1=24a2+1+7+4a2 74a2+124a2+1=7+4a2 54a2+1=7+4a2 (54a2+1)2=(7+4a2)2 25(4a2+1)=(7+4a2)(7+4a2) 100a2+25=49+56a2+16a4 16a4+44a224=0 16(a2)2+44(a2)24=0

 

Let  a2  =  u  , and let's substitute   u  in for  a2 .

 

16u2+44u24=0 4u2+11u6=0 4u2+8u+3u6=0 4u(u2)+3(u2)=0 (u2)(4u+3)=0 u2=0or4u+3=0 u=2oru=34

 

Now substitute  a2  back in for  u .

 

a2=2ora2=34 a=±2ora=±34 a=±32 a=2ora=2ora=32ora=32

 

 

The greatest value of  a  that satisfies the equation is  2  .

09.09.2018
 #2
avatar+9488 
+1
31.08.2018