Processing math: 100%
 
+0  
 
0
1281
3
avatar

Find the greatest $a$ such that $\frac{7\sqrt{(2a)^2+(1)^2}-4a^2-1}{\sqrt{1+4a^2}+3}=2$.

 Sep 9, 2018
 #1
avatar
+2

Solve for a:
5 sqrt(4 a^2 + 1) = 4 a^2 + 7

Raise both sides to the power of two:
25 (4 a^2 + 1) = (4 a^2 + 7)^2

Expand out terms of the left hand side:
100 a^2 + 25 = (4 a^2 + 7)^2

Expand out terms of the right hand side:
100 a^2 + 25 = 16 a^4 + 56 a^2 + 49

Subtract 16 a^4 + 56 a^2 + 49 from both sides:
-16 a^4 + 44 a^2 - 24 = 0

Substitute x = a^2:
-16 x^2 + 44 x - 24 = 0

The left hand side factors into a product with three terms:
-4 (x - 2) (4 x - 3) = 0

Divide both sides by -4:
(x - 2) (4 x - 3) = 0

Split into two equations:
x - 2 = 0 or 4 x - 3 = 0

Add 2 to both sides:
x = 2 or 4 x - 3 = 0

Substitute back for x = a^2:
a^2 = 2 or 4 x - 3 = 0

Take the square root of both sides:
a = sqrt(2) or a = -sqrt(2) or 4 x - 3 = 0

Add 3 to both sides:
a = sqrt(2) or a = -sqrt(2) or 4 x = 3

Divide both sides by 4:
a = sqrt(2) or a = -sqrt(2) or x = 3/4

Substitute back for x = a^2:
a = sqrt(2) or a = -sqrt(2) or a^2 = 3/4

Take the square root of both sides:
a = sqrt(2) is the largest value that satisfies the equation.
a = sqrt(2)    or    a = -sqrt(2)    or    a = sqrt(3)/2    or    a = -sqrt(3)/2

 Sep 9, 2018
edited by Guest  Sep 9, 2018
 #2
avatar+9488 
+1

7(2a)2+(1)24a211+4a2+3=2

 

 

Multiply both sides of the equation by   1+4a2+3   and note that  1+4a2+30 1+4a23

But there isn't a value of  a  that makes that true.

 

7(2a)2+(1)24a21=2(1+4a2+3) 74a2+14a21=21+4a2+6 74a2+1=24a2+1+7+4a2 74a2+124a2+1=7+4a2 54a2+1=7+4a2 (54a2+1)2=(7+4a2)2 25(4a2+1)=(7+4a2)(7+4a2) 100a2+25=49+56a2+16a4 16a4+44a224=0 16(a2)2+44(a2)24=0

 

Let  a2  =  u  , and let's substitute   u  in for  a2 .

 

16u2+44u24=0 4u2+11u6=0 4u2+8u+3u6=0 4u(u2)+3(u2)=0 (u2)(4u+3)=0 u2=0or4u+3=0 u=2oru=34

 

Now substitute  a2  back in for  u .

 

a2=2ora2=34 a=±2ora=±34 a=±32 a=2ora=2ora=32ora=32

 

 

The greatest value of  a  that satisfies the equation is  2  .

 Sep 9, 2018
edited by hectictar  Sep 9, 2018
edited by hectictar  Sep 9, 2018
 #3
avatar
+1

a=sqrt(2)

5 sqrt(4 a^2 + 1) = 4 a^2 + 7    sub sqrt(2) for a:

5 sqrt(4sqrt(2)^2 +1) = 4sqrt(2)^2 + 7

5sqrt(4*2  + 1) = 4 * 2 + 7

5 * 3  = 8 + 7

15  =  15

So, the sqrt(2) is the largest "a" that satisfies the equation.

 Sep 9, 2018

1 Online Users

avatar