Let θ be an angle such that
secθ = −135 and cotθ > 0
Find the exact values of tanθ and cscθ
By the Pythagorean identity....
sin2θ+cos2θ=1 sin2θcos2θ+cos2θcos2θ=1cos2θ tan2θ+1=sec2θ Let's divide both sides of this equation by cos2θ, and simplify.
Now plug in -135 for sec θ and solve the equation for tan θ .
tan2θ+1=(−135)2 tan2θ+1=18225 tan2θ=18225−1 tan2θ=18224
Since cot θ is positive, tan θ is positive. So take the positive square root of both sides.
tanθ=√18224 tanθ=4√1139
And...
secθtanθ=secθ÷tanθ=1cosθ÷sinθcosθ=1cosθ⋅cosθsinθ=1sinθ=cscθ
So....
cscθ=secθtanθ=−1354√1139=−135√11394556 cscθ=−135√11394556