Bosco

avatar
BenutzernameBosco
Punkte1279
Membership
Stats
Fragen 0
Antworten 728

 #1
avatar+1279 
+1

 

The numbers $24^2 = 576$ and $56^2 = 3136$ are examples of perfect squares that have a units digits of $6.$   
If the units digit of a perfect square is $5,$ then what are the possible values of the tens digit?
   

 

If a number ends with 5, its square will end with 25.  

So the only possible value of the tens digit is 2.   

 

How to square a number that ends with a 5.   

Separate the 5 out of the number.  

Change that 5 to 25.   

Add 1 to the number that is left. 

Multiply that by the original number.   

Stick the 25 to the end of the product.   

 

Examples:  

 

   152                              452                              752                              1252       

   1                  5              4                  5             7                  5              12                  5   

   1                25              4                25             7                25              12                25    

   1 x (1+1)    25              4 x (4+1)    25             7 x (7+1)    25              12 x (12+1)  25    

   1 x 2           25              4 x 5          25             7 x 8           25              12 x 13        25     

   225                              2025                           5625                             15625          

.

07.07.2024
 #1
avatar+1279 
0

 

Find the sum of all values of $k$ for which $x^2 + kx - 9x + 25 - 9$ is the square of a binomial.   

 

                                                                       x2 + (kx – 9x) + 16   

 

factor out x                                                      x2 + (k–9)(x) + 16

 

When posed as ax2 + bx + c, for there to be     

a double root, also called a repeated root,   

the term c must be a square and b = 2sqrt(c)  

 

Square root of 16 = +4 so b = (2)(+4) = +8                  

 

when +4 is positive                                         k – 9 = +8        

                                                                       k = +8 + 9   

                                                                       k = 17  

 

when +4 is negative                                        k – 9 = –8   

                                                                       k = –8 + 9   

                                                                       k = 1   

 

the sum of all values of k                                sum = 17 + 1   

                                                                       sum = 18   

.

04.07.2024