Bosco

avatar
BenutzernameBosco
Punkte1279
Membership
Stats
Fragen 0
Antworten 728

 #1
avatar+1279 
+1

 

Pearl writes down seven consecutive integers, and adds them up. The sum of the integers is equal to 28/9 times the largest of the seven integers. What is the smallest integer that Pearl wrote down?   

 

                                                                                              (x + 6)    28   

(x)  +  (x+1)  +  (x+2)  +  (x+3)  +  (x+4)  +  (x+5)  +  (x+6)  =  ––––– • –––   

                                                                                                  1         9   

                                28x + 168   

             7x + 21  =  –––––––––   

                                      9    

 

          63x + 189  =  28x + 168       

 

                     35x  =  – 21   

 

                                 – 21            3  

                         x  =  ––––  =   –––      

                                   35             5    

 

                   The solution is not an integer, so the    

                   problem, as written, is not satisfied.   sad    

 

                   Assuming the problem can be solved,   

                   I hope someone will show me my error.    

.

03.07.2024
 #2
avatar+1279 
0

 

Find the constant k such that the quadratic 2x^2 + 3x + 8x - x^2 + 4x + k has a double root.   

 

                                        2x2 + 3x + 8x – x2 + 4x + k   

 

Combine like terms           x2 + 15x + k    

 

In math, the term "double root" means "repeated root" ... i.e., both roots are the same   

 

Examples:    x2 + 2x + 1    factors to (x+1)(x+1) and both roots are –1   

                    x2 + 6x + 9    factors to (x+3)(x+3) and both roots are –3   

                    x2 – 8x + 16  factors to (x–4)(x–4) and both roots are +4   

 

One way to determine that a quadratic has a double root is when its discriminant equals zero   

 

The discriminant is the expression underneath the radical in the quadratic equation   

 

When a quadratic is posed as ax2 + bx + c the discriminant is b2 – 4ac   

 

In x2 + 15x +k in this problem, the discriminant is 152 – (4)(1)(k)   

 

Multiply it out, set equal to 0, and solve for k       225 – 4k = 0   

 

                                                                                    –4k  =  –225   

 

                                                                                        k  =  56.25    

 

The problem doesn't ask for the repeated root, but it's the square root of k.    

The factors of the quadratic are (x + 7.5)(x + 7.5) and the repeated root is –7.5   

 

check answer   

                                      x2 + 15x + 56.25 = 0   

                                     (–7.5)2 + (15)(–7.5) + 56.25 = 0   

                                       56.25 – 112.5 + 56.25 = 0    

                                                                       0 = 0   

.

28.06.2024