proyaop

avatar
Benutzernameproyaop
Punkte1632
Membership
Stats
Fragen 33
Antworten 427

 #1
avatar+1632 
+2

\(y\) is a function of \(x\), so \(y = f(x) \):

\(f(-3)=9a-3b+c=8\)                               Equation 1

\(f(-1)=a-b+c=5\)                                   Equation 2

\(f(2)=4a+2b+c=11\)                                Equation 3

 

This is a system of 3 equations and 3 variables, so it is solvable (and there is no redundancy).

Let's get solving!

 

First we want to change it into a system of 2 variables and 2 equations by manipulating to get rid of the variable c via elimination.

Equation 1 - Equation 2: \(9a-3b+c-(a-b+c)=8-5=8a-2b=3\)                 Equation 1.2

Equation 3 - Equation 2: \(4a +2b + c - (a-b+c)=11-5=3a+3b=6\)\(a+b=2\)       Equation 3.2

Then, we can eliminate b to find the value of a: Equation 1.2 + 2 * (Equation 3.2):

\(8a-2b+2(a+b)=3+2*2=10a=7\)\(a = {7\over{10}}\)                                 Value of \(a\)

Substitute this back into our equation \(a + b = 2\):

\({7\over{10}}+b=2={20\over{10}}\)\(b={20\over{10}}-{7\over{10}}={13\over{10}}\)                                    Value of \(b\)

Substitute both variables' values into the equation \(a - b + c = 5\) (it doesnt matter which equation you choose; take the easier one).

\({7\over{10}}-{13\over{10}}+c=5={50\over{10}}\)\(c={50\over{10}}+{13\over{10}}-{7\over{10}}={56\over10}\)                       Value of \(c\)

 

\(a+b+c={7\over10}+{13\over10}+{56\over{10}}={76\over{10}}=7.6\)

.
13.02.2024