Anmelden
Login
Benutzername
Passwort
Login
Passwort vergessen?
Rechner
Forum
+0
Formeln
Mathematik
Hilfe
Komplexe Zahlen
Integralrechnung
Differentialrechnung
Gleichungen
Funktionsgraphen
Lineare Algebra - Vektoralgebra
Zahlentheorie
Prozentrechnung
Standard-Funktionen
Wahrscheinlichkeitsrechnung
Trigonometrie
Einheiten-Umrechnung
Rechnen mit Einheiten
Über Uns
Impressum
Datenschutzrichtlinie
Nutzungsbedingungen
Credits
Google+
Facebook
Email
maximum
Benutzername
maximum
Punkte
817
Membership
Stats
Fragen
253
Antworten
82
256 Questions
111 Answers
-2
71
1
+817
solving an equation
How do you solve this?
Find all values of $a$ such that $\frac{a-3}{\sqrt{a}} = -a \sqrt{a}$.
●
maximum
25.08.2023
-2
41
1
+817
help stuck
Help I'm really stuck here
Ruth has a beaker containing a solution of 800 mL of acid and 200 mL of water. She thinks the solution is a little strong, so she drains 150 mL from the beaker, adds 150 mL of water, and stirs the solution.
mehr ..
●
maximum
25.08.2023
-2
39
1
+817
domain
Find the domain of the function $$f(x)=\sqrt{-10x^2-11x+6+9x^2-5x}.$$
●
maximum
22.08.2023
-2
62
2
+817
gcd
Find the greatest common divisor of $2^{1001}-1$ and $2^2-1$.
●
●
maximum
22.08.2023
-1
50
1
+817
domain
Find the domain of the function $$f(x)=\sqrt{3+5-\sqrt{x}}.$$
●
maximum
22.08.2023
-1
41
1
+817
domain
Find the smallest integer $c$ such that the domain of the function $f(x)=\frac{x^2+1}{x^2-x+c+3x^2-7x}$ is all real numbers.
●
maximum
22.08.2023
-1
53
0
+817
domain
Find the values of $x$ that are not in the domain of
\[f(x)=\frac{1}{(x^2+3x-4)+(x^2-9x+20)}.\]
maximum
22.08.2023
-2
50
1
+817
quadratic
The roots of the equation $2x^2 - 5x - 4 = -x^2 - 7x + 6$ can be written in the form $x = \frac{m \pm \sqrt{n}}{p}$, where $m$, $n$, and $p$ are positive integers with a greatest common divisor of $1$. What is the value of $n$?
●
maximum
21.08.2023
-2
46
0
+817
gcd
Find the greatest common divisor of $2^{1001}-1$ and $2^2-1$.
maximum
21.08.2023
-2
27
1
+817
bisectors
Let $I$ be the incenter of triangle $ABC$. If $AB = BC = 4$ and $\angle B = 60^\circ$, then find the length $BI$.
Express your answer in the form $a + b\sqrt{c},$ where $a,$ $b,$ and $c$ are integers, and $c$ is not divisible by any perfect
mehr ..
●
maximum
21.08.2023
«
neueste
24
23
..
8
7
6
5
4
..
2
1
»
«
neueste
10
9
..
2
1
»