Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
-2
82
2
avatar+818 

Find the greatest common divisor of $2^{1001}-1$ and $2^2-1$.

 Aug 22, 2023
 #1
avatar+121 
-1

To find the greatest common divisor (GCD) of 210011 and 221, we can use the difference of squares factorization.

Notice that 221 is a difference of squares: 221=(2+1)(21)=3.

Now, let's use the difference of squares formula for 210011:

210011=(2500+1)(25001).

Again, 25001 is another difference of squares: 25001=(2250+1)(22501).

This pattern continues, and we eventually reach 221=3.

So, we have:

210011=(2500+1)(25001)=(2250+1)(22501)==38.

Now, we can see that the greatest common divisor of 210011 and 221 is simply 3.

Therefore, the greatest common divisor of 210011 and 221 is 3.

 Aug 23, 2023
 #2
avatar
-1

Partial factorization of:  2^(1001) - 1
23×89×127×911×6007×8191×724153×112901153×23140471537×158822951431×6120360210855167691724912383945435257223721665116428926703276245201747560818857289386060189570105107203570707721973897692732984143624435639152229768723838829356129391428019897940054854494968142136307334184139636418088074652883916814682909620534381239
(10 prime factors, 1 composite factor)
2^2 - 1 ==3
Prime factorization of:
3 ==1 x 3
Since there no common factor between 2^(1001) - 1 and 2^2 - 1, therefore:


The GCD of [2^(1001) - 1,  2^2 - 1]==1

 Aug 23, 2023

0 Online Users