For this, we need to transorm the eq. to standard form:
\(x^2-6x=\frac{1}{2}x+42\)
\(x^2-\frac{13}{2}x-42=0\)
Now to use the quadratic formula:
\(a=1\)
\(b=-\frac{13}{2}\)
\(c=-42\)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(x = {-(-\frac{13}{2}) \pm \sqrt{(\frac{13}{2})^2-4(1)(-42)} \over 2(1)}\)
\(x = \frac{\frac{13}{2} \pm \sqrt{210+{1 \over 4}}}{2}\)
\(x = {{13 \over 2}\pm(14+{1 \over 2})\over 2}\)
\(x = {10+{1\over2}, -4}\)