Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26402
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26402 
+3

Simplify the following trigonometric expression

Multiply cosθ/cscθ+1 by cscθ-1/cscθ-1

 

(cos(ϕ)csc(ϕ)+1)(csc(ϕ)1csc(ϕ)1)=cos(ϕ)(csc(ϕ)1)csc2(ϕ)1|csc(ϕ)=1sin(ϕ)=cos(ϕ)(1sin(ϕ)1)1sin2(ϕ)1=cos(ϕ)(1sin(ϕ)1)1sin2(ϕ)sin2(ϕ)=cos(ϕ)(1sin(ϕ)1)sin2(ϕ)1sin2(ϕ)|1sin2(ϕ)=cos2(ϕ)=cos(ϕ)(1sin(ϕ)1)sin2(ϕ)cos2(ϕ)=(1sin(ϕ)1)sin2(ϕ)cos(ϕ)=(1sin(ϕ)sin(ϕ))sin2(ϕ)cos(ϕ)=(1sin(ϕ))sin(ϕ)cos(ϕ)=(1sin(ϕ))tan(ϕ)=tan(ϕ)tan(ϕ)sin(ϕ)

 

laugh

06.07.2017
 #6
avatar+26402 
+1

n=1/1+2 + 1/1+2+3 + ...... + 1/1+2+3+....+2014 + 2/2015, n=?

 

n=11+2+11+2+3+11+2+3+4++11+2+3++2013+11+2+3++2014+22015

 

 

n=11+2+11+2+3+11+2+3+4++11+2+3++2013+11+2+3++2014+22015=1(1+22)2+1(1+32)3+1(1+42)4++1(1+20132)2013+1(1+20142)2014+22015=223+234+245++220132014+220142015+22015=2×(12015+123+134+145++120132014+120142015)1a(a+1)=1a1a+1=2×[12015+(1213)+(1314)+(1415)++(1201312014)+(1201412015)]=2×[12015+12+(13+13)=0+(14+14)=0+(15+15)=0++(12013+12013)=0+(12014+12014)=012015]=2×(12015+1212015)=2×(12)=1

 

laugh

06.07.2017
 #19
avatar+26402 
+1

In the Small State Lottery,
three white balls are drawn at random from twenty balls labled 1-20 and
a blue Superball is drawn from ten balls labeled 21-30.
To win a prize you must match at least two of the white balls or match the blue Superball.
If you buy a ticket what is the probability that you would win a prize?

 

Let W be the probability of choosing 2 white balls out of 20 or 3 white balls out of 20 .

Let ¯Wbe not W.

 

Let B be the probability of choosing one blue ball out of 10.

Let ¯B be not B

 

W=(32)(171)+(33)(170)(203)=13285¯W=1W=113285=272285B=(11)(90)(101)=110¯B=1B=1110=910

 

B¯B110910WWBW¯B1328513285×11013285×910¯W¯WB¯W¯B272285272285×110272285×910

 

The probability of not a prize is
¯W¯B=272285×910


The probability of a prize is
1¯W¯B=1(272285×910)=28510927228510=4022850=6764756=67475=0.14105263158

 

laugh

05.07.2017
 #1
avatar+26402 
0

The point (-3,-4) divides the line joining point A(-6,-7) and point B in the ratio 1:3.

Find the coordinates of B. 

 

Set P=(34)Set A=(67)Set B= ?

 

Formula:

P=(1λ)A+λB

 

Ratio 1:3

λ=11+3=14

 

Solution for B:

P=(1λ)A+λBλB=P(1λ)AB=1λ(P(1λ)A)|λ=14B=114(P(114)A)B=4(P34A)B=4P3AB=4(34)3(67)B=4(34)+3(67)B=(1216)+(1821)B=(12+1816+21)B=(65)

 

Point B(6,5)

 

 

laugh

30.06.2017
 #1
avatar+26402 
+1

If a permutation is chosen at random from the letters "AAABBBCD",

what is the probability that it begins with at least 2 A's?
Round your answer to 6 decimal places as needed.

 

     1. 36 x AAABBBCD
     2. 36 x AAABBBDC
     3. 36 x AAABBCBD
     4. 36 x AAABBCDB
     5. 36 x AAABBDBC
     6. 36 x AAABBDCB
     7. 36 x AAABCBBD
     8. 36 x AAABCBDB
     9. 36 x AAABCDBB
    10. 36 x AAABDBBC
    11. 36 x AAABDBCB
    12. 36 x AAABDCBB
    13. 36 x AAACBBBD
    14. 36 x AAACBBDB
    15. 36 x AAACBDBB
    16. 36 x AAACDBBB
    17. 36 x AAADBBBC
    18. 36 x AAADBBCB
    19. 36 x AAADBCBB
    20. 36 x AAADCBBB
    21. 36 x AABABBCD
    22. 36 x AABABBDC
    23. 36 x AABABCBD
    24. 36 x AABABCDB
    25. 36 x AABABDBC
    26. 36 x AABABDCB
    27. 36 x AABACBBD
    28. 36 x AABACBDB
    29. 36 x AABACDBB
    30. 36 x AABADBBC
    31. 36 x AABADBCB
    32. 36 x AABADCBB
    33. 36 x AABBABCD
    34. 36 x AABBABDC
    35. 36 x AABBACBD
    36. 36 x AABBACDB
    37. 36 x AABBADBC
    38. 36 x AABBADCB
    39. 36 x AABBBACD
    40. 36 x AABBBADC
    41. 36 x AABBBCAD
    42. 36 x AABBBCDA
    43. 36 x AABBBDAC
    44. 36 x AABBBDCA
    45. 36 x AABBCABD
    46. 36 x AABBCADB
    47. 36 x AABBCBAD
    48. 36 x AABBCBDA
    49. 36 x AABBCDAB
    50. 36 x AABBCDBA
    51. 36 x AABBDABC
    52. 36 x AABBDACB
    53. 36 x AABBDBAC
    54. 36 x AABBDBCA
    55. 36 x AABBDCAB
    56. 36 x AABBDCBA
    57. 36 x AABCABBD
    58. 36 x AABCABDB
    59. 36 x AABCADBB
    60. 36 x AABCBABD
    61. 36 x AABCBADB
    62. 36 x AABCBBAD
    63. 36 x AABCBBDA
    64. 36 x AABCBDAB
    65. 36 x AABCBDBA
    66. 36 x AABCDABB
    67. 36 x AABCDBAB
    68. 36 x AABCDBBA
    69. 36 x AABDABBC
    70. 36 x AABDABCB
    71. 36 x AABDACBB
    72. 36 x AABDBABC
    73. 36 x AABDBACB
    74. 36 x AABDBBAC
    75. 36 x AABDBBCA
    76. 36 x AABDBCAB
    77. 36 x AABDBCBA
    78. 36 x AABDCABB
    79. 36 x AABDCBAB
    80. 36 x AABDCBBA
    81. 36 x AACABBBD
    82. 36 x AACABBDB
    83. 36 x AACABDBB
    84. 36 x AACADBBB
    85. 36 x AACBABBD
    86. 36 x AACBABDB
    87. 36 x AACBADBB
    88. 36 x AACBBABD
    89. 36 x AACBBADB
    90. 36 x AACBBBAD
    91. 36 x AACBBBDA
    92. 36 x AACBBDAB
    93. 36 x AACBBDBA
    94. 36 x AACBDABB
    95. 36 x AACBDBAB
    96. 36 x AACBDBBA
    97. 36 x AACDABBB
    98. 36 x AACDBABB
    99. 36 x AACDBBAB
   100. 36 x AACDBBBA
   101. 36 x AADABBBC
   102. 36 x AADABBCB
   103. 36 x AADABCBB
   104. 36 x AADACBBB
   105. 36 x AADBABBC
   106. 36 x AADBABCB
   107. 36 x AADBACBB
   108. 36 x AADBBABC
   109. 36 x AADBBACB
   110. 36 x AADBBBAC
   111. 36 x AADBBBCA
   112. 36 x AADBBCAB
   113. 36 x AADBBCBA
   114. 36 x AADBCABB
   115. 36 x AADBCBAB
   116. 36 x AADBCBBA
   117. 36 x AADCABBB
   118. 36 x AADCBABB
   119. 36 x AADCBBAB
   120. 36 x AADCBBBA
 
      4320 x AA


The probability that "AAABBBCD" begins with at least 2 A's is
43208!=432040320=0.10714285714=10.7143%

 

laugh

28.06.2017