GingerAle

avatar
BenutzernameGingerAle
Punkte2511
Membership
Stats
Fragen 4
Antworten 740

 #3
avatar+2511 
+6

I MUCKED this up when I edited it to make it neat. I can't blame it on a banana allergy.angel

The sums were/are correct for the correct values, so the answer stays the same

Here's the corrected version.

 

Black Ball probability 0.80

                                $1 Ball drawn probability 0.75    Expected Value = 0.80 * 0.75 * 1 =  $0.60 

                                $7 Ball drawn probability 0.25    Expected Value = 0.80 *0.25 * 7 =   $1.40

                                                                                                                          Sum         $2.00

 

White Ball probability 0.20

                                $8     Ball drawn probability 0.889    Expected Value = 0.20 * 0.8889 * 8    =    $1.42

                                $500 Ball drawn probability 0.111    Expected Value = 0.20 * 0.1111 * 500 =   $11.11

                                                                                                                                          Sum       $12.53

                                                   

                                                                                 Sum of expected values   2.00 + 12.53 = 14.53

 

Expected win per play $14.53

 

I'll explain the logic below.

18.09.2016
 #4
avatar+2511 
+6

EP what you write here really can’t be true.

 

If it starts at 1 and doubles everyday:

.01 on day 1

. . .

 

If the amount (a penny on day one) doubles everyday how can you have the same amount? It did not double on day one.  (This reminds me of a few crooked bankers).

 

Start with a penny on day “zero.” The decimal counting system starts with zero, not one (1). If you look at it this way, it’s more clear.

            (Expanding the window will align the text and numbers)

                 

                                                                    Comparsion to

Day               2^(day number)                      Total grains (of rice) on a chess board,

                                                                    where the previous square’s amounts are added.

                                                                    Note the first square is square zero.

 

 0                             1                                             1

1                              2                                             3

2                              4                                             7

3                              8                                            15

4                              16                                          31

 . . .                         . . .                                          . . .

28                           268435456                           536870911

29                           536870912                           1073741823

30                           1073741824                         2147483647

 

 

--------------------------

Remember: “A penny learned is a penny earned”smiley

18.09.2016
 #1
avatar+2511 
+7

(Assuming the player pays nothing to play)

 

Black Ball probability 0.80

                                $1 Ball drawn probability 0.75    Expected Value = 0.80 * 0.75 * 1 =  $0.60 

                                $7 Ball drawn probability 0.25    Expected Value = 0.80 *0.25 * 8 =   $1.40

                                                                                                                          Sum         $2.00

 

White Ball probability 0.20

                                $8     Ball drawn probability 0.889    Expected Value = 0.20 * 0.8889 * 1    =    $1.42

                                $500 Ball drawn probability 0.111    Expected Value = 0.20 * 0.1111 * 500 =   $11.11

                                                                                                                                          Sum       $12.53

                                                   

                                                                                 Sum of expected values   2.00 + 12.53 = 14.53

 

Expected win per play $14.53

 

-------------------------------------------------

I like to play the ponies. It’s a great venue to apply statistics and probability, and it is a lot of fun. It’s even more fun when you win more often.  A basic understanding of statistics helps to separate the whinnies from the neighs.

 

When the Troll-Master was tutoring me in statistics, he sent me links to two vids that parody the sport.

 

Classic Spike Jones with one of his many classical music parodies.

https://www.youtube.com/watch?v=BavRrRNvz8g

 

This one is contemporary and quite funny. Note that it has “adult” language. I’ve heard variations of this many times, but I never realized it was a horse race until I saw this.  laugh

https://www.youtube.com/watch?v=T0Zl9t8o6Es

18.09.2016