Bosco

avatar
BenutzernameBosco
Punkte1281
Membership
Stats
Fragen 0
Antworten 729

 #1
avatar+1281 
+2

 

At a cafeteria,   

Mary orders two pieces of toast and a bagel, which comes out to $3.15.   

Gary orders a bagel and a muffin, which comes out to $3.50.   

Larry orders a piece of toast, two bagels, and three muffins, which comes out to $8.15.   

How many cents does one bagel cost?   

 

                                           Mary          2T + B = 315 ............. —>  T = (315 – B) / 2       

                                           Gary          B + M = 350 ................—>  M = (350 – B)      

                                           Larry          T + 2B + 3M = 815  

 

                                           Substitute for Toast & Muffin into Larry's order  

 

                                           [(315 – B) / 2]  +  2B  +  [3 (350 – B)]  =  815   

 

                                           [(315 – B) / 2]  +  2B  +  (1050 – 3B)  =  815   

 

Multiply both sides by 2       (315 – B)  +  4B  +  (2100 – 6B)  =  1630    

 

Combine like terms              –3B + 2415  =  1630     

 

                                                        –3B  =  – 785     

 

                                                            B  =  261 2/3  ¢    

 

They usually construct these problems to come out with an even number.   

I've gone back over the steps a hundred times and cannot find a mistake.    

.

02.06.2024
 #2
avatar+1281 
0

 

Find the number of ordered pairs (a,b) of integers such that   
\frac{a + 2}{a + 1} = \frac{b}{8}.
  

 

I don't know how to read that shorthand but I'm going to assume it means   

 

                                                     (a + 2)          b    

                                                    –––––––  =  –––    

                                                     (a + 1)           8    

 

I don't know how to solve this, so, as my geometry teacher used to say    

"Go as far as you can, then see how far you can go."  

 

Let's try some numbers and see if we can find a pattern    

 

When a is 0, we get 2 / 1  so in order to preserve equality b = 16    

                 1             3 / 2                                                          12    

                 2             4 / 3  won't work, no integer is 1/3 of 8    

                 3             5 / 4                                                          10    

                 4             6 / 5  won't work, no integer is 1/5 of 8         

                 5             7 / 6  won't work    

                 6             8 / 7  won't work    

                 7             9 / 8                                                            9    

 

I think I can see intuitively that no a > 7 will result in an integer b.    

 

Let's go the other direction from zero and see what happens.  

 

When a is –1, we get   1 / 0  zero in denominator is a no-no      

                 –2, we get   0 / –1  so                                              b = 0    

                 –3, we get –1 / –2  so                                                    4    

                 –4, we get –2 / –3  won't work    

                 –5, we get –3 / –4  so                                                    6      

                 –6, we get –4 / –5  won't work  

                 –7, we get –5 / –6  won't work            

                 –8, we get –6 / –7  won't work      

                 –9, we get –7 / –8  so                                                    7      

 

It looks like the equality stops working when (a+1)          

is less than negative 8 and greater than positive 8.     

 

I can't see a general pattern – other than, in the ones that work the denominator

is counting up in base 2 but I don't know if that means anything.  If if this were my

homework, I'd go out on that limb and say that the answer is  8 ordered pairs.   

.

01.06.2024
 #1
avatar+1281 
-1
01.06.2024